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ABSTRACT

This paper presents a new financial market simulator that may be used as a tool in both industry
and academia for research in market microstructure. It allows multiple automated traders and/or
researchers to simultaneously connect to an exchange-like environment, where they are able to
asynchronously trade several financial assets at the same time. In its current iteration, this order-
driven market implements the basic rules of U.S. equity markets, supporting both market and limit
orders, and executing them in a first-in-first-out fashion. We overview the system architecture and we
present possible use cases. We demonstrate how a set of automated agents is capable of producing a
price process with characteristics similar to the statistics of real price from financial markets. Finally,
we detail a market stress scenario and we draw, what we believe to be, interesting conclusions about
crash events.

Keywords financial engineering · high frequency trading · market microstructure · real time simulation · trading
strategies

1 Introduction

A recent Congressional Research Service report on high frequency trading (Miller and Shorter, 2016) estimates that it
accounts for 55% of the U.S. equity market and 40% of European equity markets. Many studies have been done on the
advantages and disadvantages such group of traders pose to the health of financial markets. Some are discussed in Ye
and Florescu (2019). High frequency trading, however, is just a subset of larger algorithmic trading.

There are many possible interpretations to what algorithmic trading actually means. In general, it refers to advanced
mathematical models used in either automatic trading strategies or optimal order execution algorithms, with little to no
human interaction. Kissell (2013) estimates that algorithmic trading as a whole accounted for 85% of market volume in
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2012. A report from Research and Markets1 estimates the global algorithmic trading market size to grow from 11.1
billion U.S. dollars in 2019 to 18.8 billion U.S. dollars by 2024. In fact, according to JPMorgan analysts, only 10% of
2017’s stock market trading volume was performed by fundamental value traders. Among other possible effects, this
high activity of algorithmic-controlled trading may cause sell-off episodes when machines act immediately after data
releases, without the proper analysis a human would do.

In order to try and mitigate the effects of ill-constructed algorithms, regulations such as Regulation Automated Trading
(“Reg AT”) by the Commodity Futures Trading Commission (“CFTC”) (CFTC, 2015) of the United States (one of
the main regulators for derivatives markets in the U.S.) have been proposed. In general terms, Reg AT recognizes the
urgent need to adapt financial market regulations to the current business models under which exchanges and most
traders are operating today. Specifically, today’s trades are based on high-speed automated market processes for all
segments of typical financial transactions, from order placement and cancellation, to the operation of matching engines
for connecting and clearing bids and offers, to post-trade processing and data reporting. The CFTC points out in its
extensive and ambitious rule-making effort (CFTC, 2015) that most of its supervisory policies assume a world in which
trades are executed “by hand” – with extensive human intermediation, and at “human speed” – whereas the technology
in the market today operates at “machine speed” with latency as low as a few hundred microseconds. The broad charter
of Reg AT calls for a rethinking and revamping of market regulation to bring the framework up to date with modern
technology.

Reg AT specifically calls for development of capability to test all forms of automated trading or trade-support systems
that interface directly with financial markets before they are introduced into a real exchange environment. This capability
should operate in a controlled, off-line test-bed environment – but one that is realistic enough to allow reasonable
assessment of the likely impact and risk of operating those systems in a “live” market.

We believe such a test-bed would allow exchange operators to explore the consequences of possible rule changes, new
order type offerings, or anti-spoofing measures. The system would potentially have value for private sector participants
who wish to test the effectiveness of algorithmic trading systems. Moreover, researchers proposing specific changes
to the way markets operate, e.g. Budish et al. (2015), could benefit from such platform. Most of the current research
involving policy changes are either based on a theoretical framework, with no empirical evidence that rules would
properly work in practice, or they study the consequences of a rule change implementation on a particular exchange,
months after the fact (Jørgensen et al., 2018).

This technical capability does not yet exist, and Reg AT is vague as to the requirements such a system would have
to meet. The models developed thus far are primarily based on agent-based simulations. These existing models are
generally limited – often based on a agents trading a single instrument, with simulated low-frequency data and highly
artificial trading rules.

The simulator described in this paper was constructed with the goal of creating a test environment as close to reality
as possible. We replicated all the basic characteristics of a financial market exchange and tried to expand on what
is presented in agent-based models literature. The final result is a system that is very versatile and can be applied to
different scenarios in education and research.

1.1 Reviewing Agent-Based Models in Finance

The Santa Fe Artificial Stock Market (Palmer et al., 1999) is one of the most cited agent-based systems applied to
finance. With the development work taking place in the 90’s, the system models a market with one risk-free bond and
a single stock traded by agents, which follow a set of pre-defined basic rules. The system is now viewed as ground
breaking since it is the first one that models traders and measures the result of their interaction i.e., the equity behavior.

Another, more developed market simulator is presented in Jacobs et al. (2004). The authors point to the fact that
although asynchronous-time, discrete-event simulations are commonly used to model complex systems, they are rarely
used to model financial markets. The system is a multi-asset trading environment with asynchronous events. The
authors describe these asynchronous events as the agents states are updated at different times (not all agents are updated
at every turn). Outstanding buy and sell orders remain in a book, and simulation sessions last several (virtual) days,
with trading events happening throughout the day. The agents are mean-variance portfolio holders that trade at most
once a day.

The next references are important as they detail a system used to study multiple aspects of financial markets. The Genoa
Artificial Stock Market (GASM) (Raberto et al., 2001) is a market simulator that serves as basis for multiple research
papers published since 2000. The authors set to build a simple market structure that would be able to reproduce some

1Algorithmic Trading Market by Trading Type (FOREX, Stock Markets, ETF, Bonds, Cryptocurrencies), Component (Solutions
and Services), Deployment Mode (Cloud and On-premises), Enterprise Size, and Region - Global Forecast to 2024
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stylized facts, such as volatility clustering and heavy tails, observable in the distribution of real data returns. There
is only one risky asset in the market and agents send random limit orders at every simulation step, based on a finite
amount of cash and the current realized volatility. Price is formed by the intersection of the demand and supply curves
(since the system does not implement a limit order book). Raberto et al. (2003) increments the simulation with different
agent strategies, and compares their performance by looking at their wealth evolution. Cincotti et al. (2003) adds
multi-asset support to the simulator. Each agent is now holding a portfolio, with no short positions allowed. Most of the
agents act in a completely random fashion, but the paper explores the application of three different trading strategies
(mean-variance, mean-reversion and relative chartist strategy) acting in the resulting market. Both Ponta et al. (2011)
and Ponta and Cincotti (2018) explore information exchange networks among traders in variations of this multi-asset
market. In Raberto and Cincotti (2005) and Ponta et al. (2012), the single-asset model from Raberto et al. (2001)
is extended to use a limit order book as its pricing mechanism. To accommodate the simulation to this new pricing
mechanism (with time-price priority), one single agent is chosen at random at every time step to perform an action.

Jacob Leal et al. (2016) proposes a model designed to study the interaction between low frequency traders and high
frequency traders (HFT) on a single-asset market. Slow (low frequency) traders submit orders every θ turns, with each
agent having a different θ, based on either a fundamentalist or a chartist strategy. The orders sent by low frequency
traders are sent ahead of other agents at every simulation step. High speed traders act every time they see a profit
opportunity, employing directional strategies. They submit their orders after the submissions from low frequency traders
are completed. The idea being that they are fast enough to exploit the information generated by slow traders. The authors
conclude that their approach is able to reproduce main stylized facts from current financial markets. We review this
paper as one of the few examples of agent based models that is attempting to model the low frequency/high frequency
interaction. Please note that the framework is a turn based simulator similar with the traditional ones described above.

A thorough review of such agent-based simulation studies is presented in Alsulaiman and Khashanah (2015). In general,
authors set to solve a research problem. They adapt the most suitable agent-based simulator to answer the research
problem studied. They generally focus on a few sets of features that are affecting the research problem. Once the
problem has been answered and a new problem appears likely the old simulator needs to be redone. The GASM model
mentioned above is symptomatic in this aspect as every paper added a new layer of complexity to be able to answer a
new problem in effect evolving the system toward a more realistic one.

In 2014, when we started the development of the system described in this paper we wanted a “as close to reality as
possible” replica of a real market exchange. To this end we created and replicated a real market. This task was extremely
complicated and in fact we rebuilt the system from scratch four times to be the completely expandable system we have
today. We believe the resulting SHIFT2 system described in Section 2 behaves as close to a real market as possible in a
research environment. In fact, we can trade any real standardized asset in the SHIFT system. We shall discuss this in
Sections 3 and 4.

When comparing SHIFT with the existing agent-based models we found three features that are all present in our system
and which we think are crucial to replicate how markets operate today. The artificial markets in existing literature
may contain one or at most two of these features. These features in order of importance are: real pricing mechanism,
distributed asynchronous, and multi-asset.

Real pricing mechanism. Most exchanges today are order driven, while the rest are quote driven. Both types of
exchanges as well as exchange participants need to keep track of supply and demand as these are the main drivers of
market microstructure. Alsulaiman and Khashanah (2015) cites only four studies which use the limit order book as the
pricing mechanism and no quote driven markets.

Distributed asynchronous market. The majority of financial market simulators in the literature employ some type
of “turn-based system”. Even if the agents do not “play” at every turn, e.g. they perform an action every ∆t, most
of the times there is a notion of action taken at step t = 1...T and a central unit dictating the order of agent turns.3
Despite some serious attempts to introduce a real batch auction exchange, operating in discrete time (Budish et al.,
2015), all exchanges today operate in real time. Therefore, we believe that having a distributed asynchronous system
where clients may be all over the world dealing with real latency as well as a market exchange operator processing
the orders in the order that they arrive is crucial to be able to simulate a high frequency trading environment. Jacobs
et al. (2004) goes in this direction with its implementation of asynchronous events, but even though events are rendered
randomly or are caused by other events, the central unit controlling the simulation knows what the next event will be.

In our system, agents perform actions whenever they want to, and the central unit is constantly listening for incoming
messages, with no control over when they are sent and by whom. In a turn based system, high frequency traders are

2SHIFT = “Stevens High Frequency Trading Market Simulation System”
3Some studies randomize the order of action of the agents at every turn (Fricke and Lux, 2015).
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commonly simulated using a smaller ∆t, and thus the orders from the low frequency traders never arrive before their
orders. However, in a real system low frequency orders operating on outdated information may arrive earlier at the
exchange and by chance predate the HFT orders.

Multi-asset market. Most of the academic literature employing agent-based simulators is using a single risky asset
and a risk free asset. This one-traded-asset model is certainly the basis of any simulation, and many interesting
conclusions may be derived. However, allowing agents to trade multiple assets can potentially recreate the highly
correlated markets we are experiencing today. We note Cincotti et al. (2003) as early work using a portfolio of traded
assets. Furthermore, the ability to trade an ETF (i.e., a basket of stocks), as well as the ETF’s components allows us to
study complex events such as the May 2010 Flash Crash (Kirilenko et al., 2017; Paddrik et al., 2012).

We would like to make a special mention of the Penn-Lehman Automated Trading Project (Kearns and Ortiz, 2003),
developed by the Computer Science Department at Pennsylvania State University in partnership with Lehman Brothers.
The concept was similar with our system,4 but it was limited to single-asset trading. Further, it required a constant
feed of real market data (either historical or live every 3 seconds) to operate (probably to provide liquidity to its users).
Although the system was used to organize algorithmic trading competitions, we are not able to find any evidence of
agents trading against each other or being capable to move the market through their trades.

1.2 Focus of this Paper

This paper is focused on defining a realistic test bed capability, extending the agent-based approach to encompass a
much higher degree of realism in a rich market environment capable of dealing with:

• Large numbers of agents trading large numbers of assets.
• Realistic and robust trading strategies.
• Real-time, high-frequency market pricing and limit order book data.
• The ability to observe interactions between multiple agents (traders) employing potentially overlapping and

competing strategies, to enable the study of realistic market events such as crowded trades and liquidity crises.
• The ability to test under realistic conditions the effects of regulatory measures, either imposed by a central

regulator (e.g., the CFTC or the U.S. Securities and Exchange Commission - “SEC”) or introduced by the
exchange operators or researchers.

• The possible application of such a capability to perform “stress testing” of financial market systems (similar in
spirit to the Comprehensive Capital Analysis and Review - “CCAR” - program introduced for major banks
under the auspices of Dodd-Frank (2010)).

Our research builds upon an extensive modeling effort conducted over the past six years at the Hanlon Financial Systems
Center of the Stevens Institute of Technology (Hoboken, NJ - USA), known as the Stevens High Frequency Trading
Market Simulation System (SHIFT) project. We aim to demonstrate that this tool is extremely versatile and provides a
financial laboratory environment akin to laboratory environments from other research areas - where experiments can be
run in isolation, but in realistic conditions. To accomplish this, the rest of this paper is organized as follows. Section 2
provides a description of the system, presenting its modules and some of the design decisions behind them. Section 3
discusses market event replay capabilities, along with their applications on research and teaching. Section 4 presents
the use of the platform when creating a completely artificial market through the use of autonomous agents. The agents
can reproduce actual market stylized facts, and we study the effects caused by changing their parameters. Section 5
concludes our paper, and presents future possible directions for our work.

2 System Description

SHIFT is a complete and standalone system designed to emulate the essential parts of an exchange: a distributed,
real-time, and order-driven market. Its initial development focus has been on equity markets, however, the platform can
be extended to commodity, future, and option markets, and potentially to any other asset class. The system may be
thought of as more of a replica of a real time market exchange rather than a simulation environment.

The platform operates in two different ways. In one mode, SHIFT works with live, real-time, order-level market data
sent by market participants which influence everything in the market. This is typically the format used in research
studies. This implementation provides researchers the ability to assess unexpected interactions between different

4According to http://www.cis.upenn.edu/~mkearns/projects/plat.html, the project is not active anymore.
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strategies. In a second mode, the system replays recorded datasets of quote data. This implementation is typical for
commercial market simulators (e.g., paper trading accounts from Interactive Brokers5, Quantopian6, etc.) and we
normally use this type of implementation for trading competitions and teaching. In either mode, SHIFT is capable of
generating trade and quote records that may be used to evaluate the effectiveness of complex trading strategies under
conditions similar to a real high frequency market.

A realistic platform such as SHIFT needs to process a massive amount of real-time data, while interacting with an
undefined number of clients. Thus one of its major challenges is performance. Particularly, in a high frequency market,
speed is a critical factor. To accomplish this, apart from developing in a high performance programming language
(C++), we separate the server side of the system in different modules, each with a specialized task. This allow us to
avoid overloading any of the modules, as well as to divide the work of each layer of the system into multiple copies of
the same module, if necessary.

A simplified schematic of the primary modules in our system is shown in Figure 1. The arrows in Figure 1 point from
the server to the client, however information flows both ways in all connected levels of the platform. All communication
is done using the Financial Information eXchange (“FIX”) protocol7, the industry standard.

Figure 1: Modules of the SHIFT platform.

In the following subsections, we offer a brief description of the system’s architecture, with details on both server side,
called “Exchange”, and client side. A note on the scalability of the platform is also given.

2.1 Exchange

Our financial market exchange simulator contains three distinct modules: Datafeed Engine; Matching Engine; and
Brokerage Center.

Datafeed Engine. This module works as a streamer of data to the Matching Engine when the system is running in
replay mode. It requests and stores historical quoting and trading data from a market data provider, by implementing
the necessary API (application programming interface). Replay mode may be used to test single-user trading strategies
with historical data, or to provide liquidity in a multi-user environment (e.g., artificial agents or students in a classroom).

Matching Engine. As it is the case for all its real market counterparts, this module is the brain of our exchange. It is
responsible for managing the limit order book (LOB) of all of the platform’s traded assets, implementing the dynamics
of an order driven market. The matching engine manages a local LOB, containing only orders from the clients that are
connected to the platform, for each ticker. It also maintains a global LOB, which functions as the National Best Bid and

5https://www.interactivebrokers.com.
6https://www.quantopian.com.
7We use an open source implementation of FIX 5.0 SP2, QuickFIX. It is available at: http://www.quickfixengine.org.
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Offer (NBBO) system specific to U.S. markets. The Matching Engine automatically routes orders from the local LOB
to the global LOB whenever a better price may be obtained in an outside exchange.

Brokerage Center. This is the hub that centralizes all communication between clients and Matching Engine. It was
initially conceived as a way to remove unnecessary load from the Matching Engine in functions such as providing all
current limit order book data to newly connected clients, as well as broadcasting changes in the limit order books to
clients. However, in its current implementation, its use has been expanded. It charges transaction fees (both long and
short sells), and it keeps portfolio information for all connected clients, along with their current buying power8. This
information is used for account persistence and portfolio valuation, as well as assessing trading limits and margin calls.
The Brokerage Center also stores permanent records of all trading data generated by the users of the exchange.

2.2 Clients

We have developed two main ways for users to access our platform: a web interface and APIs in C++ and Python. The
web interface was developed with students in mind, so that they could use it in market microstructure classes to learn the
rules of operating a trading account in a real market. A sample of the interface is presented in Figure 2. In addition to
the overview page (Figure 2a) and the limit order book page (Figure 2b), users can also see their portfolio information.

(a) Overview page, with last and best prices data for each of the trading symbols. The
green and red coloring indicate up and down movements, respectively, since the last
update.

(b) Each trading symbol has its own LOB page, containing a candlestick data plot of
the simulated price, as well as the global and local LOBs, as explained in Section 2.1.

Figure 2: SHIFT web interface.

8The amount of money a user of the system has available to spend.
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For more advanced uses, we have created APIs in both C++ and Python. These can be used to create complete
algorithmic trading strategies, and we use them in teaching and in research. For research, each client can be viewed
as an agent in an agent-based simulation. Since agents are actual trading accounts operated by individual pieces
of software or real people, SHIFT provides a more complex and close-to-reality simulation than existing literature.
Because of its server-client architecture, multiple simultaneous agent connections are naturally asynchronous, and even
the effects of network latency can be explored.

Examples of use of the platform as an agent-based simulation tool are presented in Section 4. Some basic examples of
use of our Python API can be found in Appendix A.

2.3 Scalability

The platform was developed so that it may be scaled to any number and types of assets as well as any number of clients.
The modular architecture allows us to add more instances of each module as needed. For example, a common issue in
high frequency studies is when a large number of simultaneous client connections causes the system to slow down due
to increased network traffic. A solution is presented in Figure 3a where we add more instances of the Brokerage Center.

In the case when the Matching Engine starts receiving more orders than it can process in real time, or if we simply want
to add different financial assets, we may add more Matching Engine modules (Figure 3b).

(a) Schematics of the platform with more instances of
the Brokerage Center, as a measure to avoid hitting
network performance bottlenecks.

(b) Schematics of the platform with more instances of
both the Brokerage Center and the Matching Engine.

Figure 3: Scalability of the SHIFT platform.

3 Replaying Market Events

Outstanding orders of users connected to the platform are placed in what we call the local limit order book. These
orders follow the usual rules of order-driven markets, with price-time priority of orders. When in replay mode, the
system also makes use of market data obtained from a particular provider. We currently collect microsecond last and
best prices data from different exchanges, along with their volume, and we use this information to create what we call
the global limit order book of each asset - representing the National Best Bid and Offer (NBBO) system.

The Datafeed Engine streams data to the Matching Engine, which keeps track of the best prices as they were at a given
moment in time. These global quotes together with the orders coming from the users in the system create market
liquidity. Liquidity therefore is not infinite in the system. There are two major consequences of this design. First, users
are in fact competing for liquidity, so two equal orders submitted at exact the same time may have completely different
outcomes, depending on which order arrives first at the Matching Engine. Second, even though users cannot cause
long-term impact on market prices in replay mode, traded prices may deviate from the real prices for a little while.

In general, researchers and students who backtest trading strategies use downloaded historical price and quotes data.
They therefore use unrealistic assumptions such as infinite liquidity and minimal reaction time. In our system we can
account for order timing, bid-ask spread, and available volume thus creating much more realistic results. Moreover,
the capability of replaying any given day, or of creating completely artificial market scenarios (see Section 4), allows
researchers to better design take profit and stop loss rules, as well as stress test their trading strategies.

7
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3.1 Using the System as a Tool to Understand Market Dynamics

In an effort to engage students with hands-on experience with modeling and algorithmic trading, we introduced SHIFT
into lectures at Stevens Institute of Technology. From computing basic statistics from a live stream of limit order book
and last price data to implementing and verifying their own trading strategies in market microstructure and algorithmic
trading classes, the feedback from students so far has been very positive. We should mention that SHIFT is invaluable
in demonstrating to the students a specific point. Every strategy that we implemented which is profitable when using
daily data ends up losing money in a realistic system using intraday, high frequency data.

A pilot algorithmic trading competition ran during the Spring semester of 2019, and others are planned for the future. In
this first edition, there were 38 participating students, divided in 11 teams of 3 to 4 students each, trading any of the 30
Dow Jones Industrial Average9 stocks. Each week, teams were given access to their own instance of the simulator for 6
days of training, which culminated in all 11 algorithmic trading strategies running against each other and competing for
the best opportunities in day 7. Every competition day had a different theme, from low volatility days to flash crash
days, no outside (human) intervention was allowed, and portfolios would reset, giving a fair chance for teams to recover
from a bad week. In the end, the team with the highest total profit after 6 weeks of competition won.

The competition was beneficial for us since it allowed us to discover and fix many issues as well as improve the system
usability. It was also beneficial for the students who learned about trading and difficulties of applying class concepts
to real world. Figure 4 shows the daily profit of the top 7 teams along with their average (red dotted line) during the
competition’s 6 weeks. The lines generally display a positive trend showing that students were learning from their
mistakes and enhancing their algorithms.

Figure 4: Algorithmic trading competition teams’ daily profit evolution.

4 Artificial Market Capabilities

When not replaying market events, the global limit order book functionality is turned off, and all market formation
happens in the local limit order book, with orders coming from the users of the systems. These can be researchers,
students, market practitioners, or completely artificial agents.

As an initial proof of concept, we set ourselves to create the simplest possible market, where zero intelligence agents
with no notion of profit or loss trade a single asset. We describe these agents in the next subsection, followed by the
results of experiments we did with such agents in Sections 4.2 and 4.3.

4.1 Zero Intelligence Agents

The trading strategy we chose for our zero intelligence agents is inspired from previous work done in the Genoa
Artificial Stock Market, described in Raberto et al. (2001) and Ponta et al. (2012). Modifications were necessary due to
the real-time nature of our simulation.

9https://us.spindices.com/indices/equity/dow-jones-industrial-average

8
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4.1.1 Trading Strategy

During the trading session (i.e. a simulation execution), each agent trades according to a Poisson process with fixed rate
λ (λ is the same for every trader). One can find details of generating a Poisson process in (Florescu, 2014, Chapter 10).
Each of the N traders trades Φi times at times τi,j , j = 1...Φi.

At time τi,j , the i-th trader will execute two simple actions:

1. If the trader has an outstanding order, i.e. if their last limit order (or a portion of it) is still in the limit order
book, send a corresponding cancel for the remaining (buy/sell) order.

2. Decide whether their next limit order is going to be a buy or a sell (probability 0.5):
• If the order is a limit buy, the limit price of the order will be P bτi,j ∼ N(µbτi,j , σ

2), where µbτi,j is the
smaller value between the current best bid and the last available price. This simulates the fact that buyers
want to pay the lowest possible value to acquire assets.
• If the order is a limit sell, the limit price of the order will be P aτi,j ∼ N(µaτi,j , σ

2), where µaτi,j is the
larger value between the current best offer and the last available price. Sellers want to receive the highest
possible value for their assets.

An initial price value P0 is given as a parameter to our autonomous agents, representing the close price of the previous
day. This value is used as the initial µbτi,0 and µaτi,0 values if no other information is available at the moment, i.e. if
no other agent submitted limit orders yet. Furthermore, the volume of each submitted limit orders is determined as
a proportion rτi,j , which we will call the current confidence level, of the buying power (for limit bids) or number of
shares (for limit offers) the ith trader has available at the moment of order submission.

4.1.2 Wealth Distribution

The GASM papers that inspired our agents implementation use an equal distribution of buying power and amount of
shares among their autonomous agents. We discovered that such homogeneous distribution has an important contribution
to the resulting price formation process, as will be shown in Section 4.2.3. Therefore, we have opted for a randomized
wealth distribution in our experiments.

The initial division of shares S = (S1, ..., SN ), i = 1...N , with N the total number of traders in the simulation, follows
a Dirichlet distribution. The probability density function of a Dirichlet distribution has the following form:

f(x1, ..., xN ;α1, ..., αN ) =
Γ
(∑N

i=1 αi

)
∏N
i=1 Γ(αi)

N∏
i=1

xαi−1
i ,

where xi ∈ (0, 1),
∑N
i=1 xi = 1, and α1, ..., αN are the concentration parameters.

A symmetric Dirichlet distribution is a particular case of a Dirichlet distribution with α1 = ... = αN = α. The
probability density function is then simplified to:

f(x1, ..., xN ;α) =
Γ(αN)

Γ(α)N

N∏
i=1

xα−1
i ,

with α the concentration parameter. The higher the value of α, the more homogeneous the distribution of wealth is
among traders.

When a trader i is assigned Si initial shares, we also give them an initial buying power (cash) equal to their selling
power (shares). That is BPi = P0Si where P0 is the initial share value.

4.2 Experiment 1: Establishing a Functioning Market Exchange

In this section we will introduce parameters and agents that create a well functioning exchange. Our goal is to
demonstrate that the resulting price process has similar characteristics with a real price process during a normal trading
day devoid of any financial events. We also aim to study how the agent parameters affect the behavior of the formed
price process.

There are 2, 000, 000 available shares of CS1, a fake stock ticker, with an initial price P0 = $100, 00. The initial market
capitalization of CS1 is thus 200 million. Since traders receive a sum of cash equal to their endowed shares the total
initial value of assets in the market (sum of all buying and selling powers) is $400, 000, 000. The rest of the parameters
in this experiment are as follows:

9
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• N = 200 traders.

• Simulation length M = 23400 seconds (6.5 hours).

• Agents attempt to trade an average of λ = 390 times during the trading session, i.e. on average, they submit
one limit order every minute.

• Standard deviation from the best prices σ = $0.10.

• Confidence level rτi,j ∼ U(0.2, 0.6), i.e. limit order size is uniformly distributed between 20% and 60% of
the total buying or selling power of the agents, depending if it is a limit buy or a limit sell order, respectively.

• Wealth concentration parameter α = N = 200. With this α value, traders on average have 10, 000 initial
shares each, with a standard deviation of about 670 initial shares among all traders.

Example simulated price paths are show in Figure 5, with the respective return plots in Figure 6. Visually, these plots
resemble real stock price/return behavior during a given day. Even though there is no flux of outside information into
the system, prices display characteristics of the real price series, which we discuss in the next sections.

(a) Baseline Experiment 1 (b) Baseline Experiment 2

Figure 5: 1-minute price paths for two baseline experiments.

(a) Baseline Experiment 1 (b) Baseline Experiment 2

Figure 6: 1-minute returns for two baseline experiments.

4.2.1 Comparing Statistics of Simulated and Real Traded Price Data

Figures 7 and 8 present statistics for the returns displayed in Figure 6. Although here we only discuss the results of two
simulated series, the statistics of all simulated experiments are very much in line with the known stylized facts of return
time series (Cont, 2001). We present two results to display the consistency of the resulting statistics.
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(a) Returns Autocorrelation (b) Normal Q-Q Plot (c) Squared Returns Autocorrelation

Figure 7: 1-second returns statistics for a baseline experiment.

(a) Returns Autocorrelation (b) Normal Q-Q Plot (c) Squared Returns Autocorrelation

Figure 8: 1-second returns statistics for a second baseline experiment.

Negative autocorrelation. Because of the “bounce effect” caused by the bid-ask spread, where market orders may
match against either side of the book, returns are expected to exhibit a negative autocorrelation when sampling in small
time scales, as shown in Figures 7a and 8a.

Leptokurtic behavior. The distribution of returns has “heavy tails” (Bouchaud and Potters, 2003; Voit, 2005). That
is, return values far from the average are occurring more frequently than if they should if they followed a Gaussian
distribution. This is evidenced in the Q-Q plots (Figures 7b and 8b), where the excess kurtosis is also reported. Here we
use data sampled every second, and the average excess kurtosis of all experiments we did was around 2.

Volatility clustering. When looking at the realized volatility, more precisely at the autocorrelation function of squared
returns, it is possible to see in Figures 7c and 8c that periods of high volatility will lead to other periods of high volatility.
This phenomenon, known as volatility clustering, is another known feature of financial market data (Cont, 2007). In fact,
the slow decay found in these autocorrelation plots, showing signs of long memory in the volatility, is also documented
in the literature (Lobato and Velasco, 2000).

Furthermore, the resulting time series data exhibits heteroskedastic effects. When performing the autoregressive
conditional heteroscedasticity (ARCH) test (Engle, 1982) we obtain p-values extremely low and we reject the null
hypothesis of no ARCH effects for all experiments. If we try to fit an actual ARCH model, we need around 9 lags to
best fit returns sampled every second.

We note that unlike the GASM model our zero intelligence agents do not look at the realized volatility and adapt their
strategy depending on its current value. Indeed, the volatility parameter they use when choosing the price of submitted
limit orders remains constant during the whole simulation. Our system does not need the agents to adapt to create a
price process with all characteristics mentioned in above. We make this observation since it is argued in literature (see
e.g., Lux and Marchesi (1998)) that the arrival of news and the reaction of agents to the news and the market plays a big
role in creating such characteristics. In our system we see that even though there is no external news and the agents are
very basic we still observe these market characteristics. We thus argue that implementing and respecting the actual
trading rules of current financial markets are instrumental to create a proper market simulation.
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4.2.2 Limit Order Book Dynamics for Simulated Versus Real Data

The limit order book data gathered from our simulations displays characteristics found in real market data. Figure 9a
shows the average shape of the limit order book, i.e., the average volume at each tick (in our case, $0.01) distance from
the mid price. Here, we present both bids and offers together, since their average volume behavior is the same. In real
data this shape is characterized (Bouchaud et al., 2002) by a peak a few ticks away from the mid price, since volumes
closer to the mid price tend to be executed more frequently, followed by a power law decay of the average volume of
more “patient” traders. We observe similar characteristics in Figure 9a.

(a) Average Shape of the Limit Order Book (b) Bid-Ask Volume Imbalance

Figure 9: Limit order book average shape and volume imbalance for a baseline experiment.

(a) Spread Time Series (b) Spread Autocorrelation (c) Spread Sample Distribution

Figure 10: Spread characteristics for a baseline experiment.

In Figure 9b, we plot the dynamic volume imbalance in the limit order book. Specifically, we plot the difference
between the volume in each side of the limit order book during the trading day. There are imbalance peaks in both sides
of the spectrum throughout the trading day, when there is more pressure from one of the market sides. However, as
expected in near-equilibrium, the general trend is mean reverting.

We then turn to spread characteristics in Figure 10. Spread is the difference between current best bid and offer prices in
the limit order book, and it represents the cost someone incurs when executing a market order. Spread is one of the best
proxies for liquidity in high frequency trading (Salighehdar et al., 2017; Mago et al., 2017). As previously described in
the literature (Plerou et al., 2005), the time series of spread values should be characterized by persistence (Figure 10b).
Furthermore, the asymptotic shape of the spread distribution should be described best by a power law (Figure 10c).

4.2.3 Connection Between Agent Parameters and Resulting Price Process

Generally agent-based model papers provide a set of parameters that is tested to create market behavior similar to real
markets. Here, since the system is so close to reality we can study the impact of parameters on the resulting price
formed. Intuitively, in a homogeneous environment we have an entropy/central limit principle that tells us the resulting
quantity (temperature, pressure, price) has a Gaussian behavior. The more non-homogeneous the environment the more
departure from Gaussianity. Thus we wanted to create parameters characterizing the agents which will allow us to go
from homogeneous agents to non-homogeneous ones.
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Impact of order size. In our base experiment scenario, traders submit buy or sell orders with sizes ranging from 20%
to 60% of their current cash or shares value, respectively. This proportion rτi,j is random for every trade and represents
the trader confidence level at the moment when the order is sent. This confidence level turns out to be very important
for the distribution of the resulting returns.

(a) rτi,j ∼ U(0.2, 0.4) (b) rτi,j ∼ U(0.2, 0.6) (c) rτi,j ∼ U(0.2, 0.8)

Figure 11: Normal Q-Q plots for simulated returns with different confidence levels.

We ran three different experiments. We vary the agent confidence levels from conservative (20% to 40%), baseline
(20% to 60%), and risky (20% to 80%) and we show the Q-Q plots of the returns in Figure 11. We can see from the
plots that the larger the orders the traders can execute, the more leptokurtic the resulting return distribution will be.
When running several of the same experiment, the average excess kurtosis increases from 1.75 for the conservative
case, 1.96 for the baseline case, to 2.12 for the risky case - all of these values being statistically different.

Impact of wealth distribution. Recall that in the typical agent-based simulations all agents have the same initial
wealth. This is a typical homogeneous environment. In SHIFT we wanted to have random initial endowment. This is
why we use the Dirichlet distribution. We experimented with modifying the wealth concentration parameter α from N
to 1. When α = N traders have on average 10, 000 initial shares each with a standard deviation of about 670 shares
among all traders. When α = 1 the agents are much more heterogeneous from the perspective of initial wealth. Their
expected value is still 10, 000, but the standard deviation is now about 9, 590 shares. In our experiments, the trader with
the largest amount had 66, 500 shares in the beginning of the trading day, while the poorest trader had only 100 shares.

The homogeneous wealth results (α = N ) have been presented in Figure 11. We contrast those results with the results
in Figure 12. This non-homogeneous distribution of wealth is likely to be closer to reality. Exchanges today have a
small number of large institutional traders that dominate through their volume of trades.

(a) rτi,j ∼ U(0.2, 0.4) (b) rτi,j ∼ U(0.2, 0.6) (c) rτi,j ∼ U(0.2, 0.8)

Figure 12: Normal Q-Q plots for simulated returns with different confidence levels, when wealth distribution in
non-homogeneous.

The resulting excess kurtosis is always larger than in the previous (more homogeneous) experiments. We note that,
although for this particular run Figure 12b shows an excess kurtosis below the value in Figure 12a, on the average, the
relationship between different confidence level ranges stays the same. The average values are 2.80, 2.98, and 3.30 -
from conservative to risky cases.

The relationship between “heavy tails” and the impact of orders coming from large market participants has been
previously studied (Gabaix et al., 2003). It is nonetheless interesting that we can easily reproduce it with simple
parameter values changes in our simulation.
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4.2.4 Effects of Different Sampling Frequencies and Trading Activity

We think this section is one of the most interesting observations we made simply by running the system and varying
parameters. It is well known that using different sampling frequencies produces different parameter values. For
example, in one of the most cited papers in mathematical finance literature (Zhang et al., 2005), the authors observe
that realized variance has different values depending on the sampling frequency of the price data used. They attribute
this discrepancy to noise in the market and propose a new estimator that is used extensively today (multi-grid realized
volatility). However, in our simulations the same exact run produces completely different distribution shapes depending
on the sampling frequency used.

(a) 0.5-Second Returns (b) 1-Second Returns (c) 2-Second Returns

Figure 13: Normal Q-Q plots for simulated returns with different sampling frequencies.

Figure 13 exemplifies such behavior. The returns presented in Figures 13a, 13b, and 13c are all from the same price
series (Figure 5a), but the smaller the time scale, the “heavier” the tails of the distribution of returns. This effect is
actually present when sampling real financial data as well (Aldrich et al., 2014). In fact, this particular effect is called
aggregational Gaussianity in Cont (2001). As the sampling time scale is increased, the returns distribution will get
closer to a Normal distribution.

(a) 1-Second Returns when λ = 390 (b) 2-Second Returns when λ = 390

(c) 0.5-Second Returns when λ = 780 (d) 1-Second Returns when λ = 780

Figure 14: Normal Q-Q plots for simulated returns. Top row presents results from an experiment where agents submit
orders on average every minute (λ = 390). Bottom row are results from an experiment where traders act on average
every half a minute (λ = 780).

Moreover, we found that this aggregational Gaussianity is not only related to the sampling time interval, but also to
the total trading activity in the market. In the base experiment scenario, with agents submitting orders on average
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(a) 4-Second Returns when λ = 390 (b) 8-Second Returns when λ = 390

(c) 2-Second Returns when λ = 780 (d) 4-Second Returns when λ = 780

Figure 15: Normal Q-Q plots for simulated returns. Top row presents results from an experiment where agents submit
orders on average every minute (λ = 390). Bottom row are results from an experiment where traders act on average
every half a minute (λ = 780).

every minute (λ = 390), we averaged 98, 757, 500 shares traded during a simulation day. If we increase their action
frequency to once every half a minute (λ = 780), we averaged 197, 323, 570 shares traded during a simulation day.
This increase corresponds to a more active equity.

Figures 14 and 15 exemplify the relation between sampling frequency, trading activity, and the Gaussian distribution.
First, we note the aggregational Gaussianity - specifically we see the excess kurtosis dropping as the sampling interval
increases. Second, an even more interesting phenomenon is observed by looking at the “two” equities: the baseline
and the more active equity. As we double the trading activity and the sampling frequency we obtain similar kurtosis
values with the baseline case. Specifically, compare Figure 14a with Figure 14c and Figure 14b with Figure 14d. We
observe a similar phenomenon in Figure 15, where we decrease the sampling frequency further. In these results the
excess kurtosis values are negligible, but the Q-Q plots visual resemblance is present. This is interesting because it
points toward studying and comparing different financial asset time series differently depending on their characteristics,
such as trading volume.

4.3 Experiment 2: Market Stress Scenarios

Following our findings on replicating stylized facts in the context of SHIFT, we demonstrate the system capability to
study market stress conditions. Specifically, we study the relationship between market factors and crash characteristics.

To set up the experiments we use N = 200 traders, and the simulation length is set to M = 3600 seconds (1 hour).
Around 30 minutes into the simulation, we create a crash by having new trader(s) forcefully placing a large order on the
market. We study the differences in the way we create the crash and the interaction with the market conditions.

Market factors:

• Trading frequency: Market traders attempt to trade on average every minute (1 min) or every half a minute
(0.5 min).

• Homogeneity: The market can be homogeneous (H), with an even distribution of wealth (α = N ) and traders
confidence level rτi,j ∼ U(0.2, 0.4), or non-homogeneous (NH), with an uneven distribution of wealth (α = 1)
and traders confidence level rτi,j ∼ U(0.2, 0.8). That is, we choose the extreme cases described in Section
4.2.3 to represent the homogeneous and the heterogeneous market conditions.
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Crash condition factors:

• Stress size: Crash traders own 5% (level one of the factor) or 10% (level two of the factor) of the total amount
of shares available in the market.

• Stress traders: This factor has three levels. The first level is a single crash trader placing a large order around
30 min into the simulation (labeled in the output with 1). For the second level we consider 20 crash traders
collectively owning the same quantity as the one trader and all placing the orders at about the same time (20
S simultaneously). For the third level, we consider 20 crash traders placing the same total quantity with a
3-second interval between their actions (20 NS non-simultaneously).

We ran 10 experiments for each possible combination of factors, for a total of 240 experiments. We were initially
planning more experiments for each factor combination, but the results were very stable. Sections 4.3.1 and 4.3.2
discuss the results obtained.

4.3.1 Market Drawdown Analysis

In the vast majority of our stress event experiments, the price of the CS1 stock falls after the sell-off event. In some
cases, the price drop was considerably large, as exemplified in Figure 16a. In other cases, the price decrease was not
large, and the market would either continue to drop slowly after the stress event (Figures 16b) or completely recover
(Figure 16c).

(a) Large Market Impact (≈ 4%) (b) Small Market Impact (≈ 0.5%) (c) No Market Impact

Figure 16: 1-second returns during stress events.

Based on the results obtained we analyze which of the factors listed in Section 4.3 are influential for a stress event. One
of the main issues is constructing a variable that measures a crash. We could use the drawdown or the time to drawdown
to measure the impact of the crash. Here we chose to use the slope of the market drawdown since we know the exact
time when the stress event starts. The slope combines both the drawdown size and duration. We illustrate the drawdown
slope in blue in Figure 16.

Since we use categorical variables as inputs and a quantitative variable (drawdown slope) as output, an analysis of
variance (ANOVA) is the most appropriate statistical analysis. We display the ANOVA table of the final model that
eliminated all non-significant interaction terms in Table 1. These results indicate a strong influence of each of the four
factors individually, as well as that some factor interaction is significant.

Table 1: Analysis of variance on the slope of the market drawdown in our simulated stress events.
Factor DF Sum Sq. Mean Sq. F-Value P-Value

Trading Freq. (TF) 1 1.30e−9 1.30e−9 96.507 <2e−16
Homogeneity (H) 1 7.14e−11 7.14e−11 5.315 0.022032
Stress Size (SS) 1 2.63e−9 2.63e−9 195.614 <2e−16
Stress Traders (ST) 2 1.67e−10 8.34e−11 6.211 0.002361
TF : SS 1 2.02e−10 2.02e−10 15.02 0.000139
H : SS 1 7.20e−11 7.20e−11 5.357 0.021515
H : ST 2 9.72e−11 4.86e−11 3.617 0.02841
Residuals 230 3.09e−9 1.34e−11

As expected, the market conditions do not interact, however, the crash agents characteristics interact with market
conditions. Since the three way and more interactions are not significant, we next investigated how the combination of
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factors affect the drawdown slope. We apply a multiple pairwise procedure (Tukey’s honestly significant difference -
HSD - test) to the resulting significant factors, and we summarize the results in Table 2.

Table 2: Tukey’s HSD test applied to the resulting significant factors of the analysis of variance in Table 1.
Factor 1 Factor 2 Average 1 Factor 1 Factor 2 Average 2 Diff. P-Value

Trading Freq. Trading Freq.
0.5 min −1.3525e−5 1 min −8.7907e−6 0

Homogeneity Homogeneity
NH −1.1619e−5 H −1.0696e−5 0.0220322

Stress Size Stress Size
10% −1.4495e−5 5% −7.821e−6 0

Stress Traders Stress Traders
1 −1.2024e−5 20 NS −1.1037e−5 0.0524403
1 −1.2024e−5 20 S −1.0413e−5 0.0019054
20 NS −1.1037e−5 20 S −1.0413e−5 0.5071921

Trading Freq. Stress Size Trading Freq. Stress Size
0.5 min 10% −1.774e−5 1 min 10% −1.1250e−5 0
0.5 min 10% −1.774e−5 0.5 min 5% −9.3108e−6 0
0.5 min 10% −1.774e−5 1 min 5% −6.3313e−6 0
1 min 10% −1.125e−5 0.5 min 5% −9.3108e−6 0.0186553
1 min 10% −1.125e−5 1 min 5% −6.3313e−6 0
0.5 min 5% −9.3108e−6 1 min 5% −6.3313e−6 0.000217

Homogeneity Stress Size Homogeneity Stress Size
H 10% −1.4551e−5 NH 10% −1.4439e−5 0.9999999
H 10% −1.4551e−5 NH 5% −8.7998e−6 0
H 10% −1.4551e−5 H 5% −6.8423e−6 0
NH 10% −1.4439e−5 NH 5% −8.7998e−6 0
NH 10% −1.4439e−5 H 5% −6.8423e−6 0
NH 5% −8.7998e−6 H 5% −6.8423e−6 0.0068273

Homogeneity Traders Homogeneity Traders
NH 1 −1.316e−5 NH 20 NS −1.1263e−5 0.0206907
NH 1 −1.316e−5 H 1 −1.0888e−5 0.0070141
NH 1 −1.316e−5 H 20 NS −1.081e−5 0.0044496
NH 1 −1.316e−5 NH 20 S −1.0434e−5 0.0005655
NH 1 −1.316e−5 H 20 S −1.0391e−5 0.0005298
NH 20 NS −1.1263e−5 H 1 −1.0888e−5 0.9994443
NH 20 NS −1.1263e−5 H 20 NS −1.081e−5 0.9972526
NH 20 NS −1.1263e−5 NH 20 S −1.0434e−5 0.9138295
NH 20 NS −1.1263e−5 H 20 S −1.0391e−5 0.9082994
H 1 −1.0888e−5 H 20 NS −1.081e−5 0.9999945
H 1 −1.0888e−5 NH 20 S −1.0434e−5 0.9842938
H 1 −1.0888e−5 H 20 S −1.0391e−5 0.9825362
H 20 NS −1.081e−5 NH 20 S −1.0434e−5 0.9941547
H 20 NS −1.081e−5 H 20 S −1.0391e−5 0.9933012
NH 20 S −1.0434e−5 H 20 S −1.0391e−5 1

Looking at individual factor effects, we see results that we more or less suspected. A more active (0.5 min) market
exacerbates the drawdown. A non-homogeneous (NH) market creates steeper market drawdown movements. Similarly,
when traders liquidate a larger market share (10%), this produces a larger slope.

Looking at the stress traders characteristics produces interesting conclusions. Markets in which the stress event is
caused by a single trader have a stronger tendency to steeper market drawdown movements than in markets in which the
stress event is caused by 20 traders. In fact, there is no statistical difference when comparing 20 simultaneous traders
(20 S) liquidating their shares and 20 non-simultaneous traders (20 NS) liquidating the same amount. It is easy to
understand the difference may exist when comparing a single trader with 20 traders liquidating the same order but over
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a longer period. It is the difference between absorbing a sudden shock all at once or in smaller doses. The reasoning
why the 20 simultaneous traders behavior is closer to the 20 non-simultaneous traders rather than the single trader is not
that easy. We believe what we are seeing is related to the price-time order priority of order-driven markets, and the fact
that there are other 200 traders in our simulation competing for this priority. That is, the market order of the single stress
trader will be executed in its entirety, all at once. The 20 orders from the 20 simultaneous traders are programmed to be
submitted all at the same time. However, random orders from the other 200 traders may arrive between these orders,
thus sometimes smoothing the stress event effect. This in turn produces statistically different results. We highlight this
finding since such impact may be difficult to observe unless using an order-driven and distributed asynchronous market
implementation.

Studying interaction terms, trading frequency and stress size show a clear multiplicative behavior. Less active markets
(1 min) with stress events of smaller magnitude (5%) show smoother drawdown compared with high active markets (0.5
min and 10% stress size). When looking at the interaction between homogeneity and stress size, we see a different
picture. Liquidating a 10% order impacts the market much stronger than liquidating 5%, regardless of market conditions
(H versus NH). Most interestingly, when studying the interaction between market conditions (homogeneity) and stress
traders characteristics (1 versus 20), it is clear that stress events caused by a single trader in non-homogeneous market
conditions produce a steeper drawdown movement.

4.3.2 Immediate Market Impact Analysis

Drawdown is a classical measure which may be calculated it in our experiments since we know the exact start time
of the crash. However, we also want to study the immediate effect of the orders’ liquidation on the exchange price.
Visually, we can see that some of our experiments show signs of an immediate impact in the stock price while others do
not (Figure 17 versus Figure 16). The price drop may have different magnitudes, as presented in Figures 17a and 17b.
The drop may in fact happen a few minutes after the sell-off event, as is the case in Figure 17c.

(a) Large Immediate Impact (≈ 2%) (b) Small Immediate Impact (≈ 0.2%) (c) Delayed Immediate Impact (≈ 1%)

Figure 17: 1-second returns during stress events with immediate impact.

In order distinguish between the situations in the figures depicted we have to devise a distinguishing criteria. In order to
do this we use the return statistics from the identical experiments in Section 4.2 which were lacking the crash traders.
Specifically, we use the levels of the two market factors to identify the corresponding non-stress experiments and use its
statistics.

The procedure looks at the one second returns of the asset during a window of time starting a few moments before and
ending 5 minutes after the stress event. The largest negative one second return during this period must be greater than 3
standard deviations from the mean return of the corresponding non-stress simulation day. If there is no such return the
market did not experience an immediate impact.

If such a large return exists, we use it as the starting point for further investigation. We denote the time of the largest
return with τ0. We next look for returns at least 2 standard deviations away from the mean return of a calm day, k
seconds prior and k seconds past τ0. If they exist, these returns may be positive or negative, since at this point we are
interested in any market disturbance that might be part of the immediate impact. We continue to expand our immediate
impact window in both directions k seconds at a time until no such returns are found anymore. Finally, the resulting
total return (sum of all returns for the period) must be at least 4 standard deviations away from the mean return of
a non-stress simulation day. If everything passes the check the immediate impact period is returned. In practice we
use k = 15 seconds and 2 standard deviations as these parameter values maximized the recognition of events with
immediate impact visible on the plots, while also minimizing the number of false positives.
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This simple technique allow us to identify experiments which had immediate impacts. Next, we analyze which factors
had the most influence on the probability of having an immediate impact. The most significant factors and their
interactions are presented in Table 3.

Table 3: Factors pairwise t-tests for determining which values increase the probability of immediate impact events.
Factor 1 Factor 2 Average 1 Factor 1 Factor 2 Average 2 Diff. P-Value

Homogeneity Homogeneity
NH 35.0% H 45.8% 0.088

Stress Size Stress Size
10% 55.0% 5% 25.8% 2.80e−6

Stress Traders Stress Traders
1 57.5% 20 NS 33.8% 0.0038
1 57.5% 20 S 30.0% 0.001
20 NS 33.8% 20 S 30.0% 0.6205

Homogeneity Stress Size Homogeneity Stress Size
H 10% 68.3% NH 10% 41.7% 0.0072
H 10% 68.3% NH 5% 28.3% 1.90e−5
H 10% 68.3% H 5% 23.3% 1.40e−6
NH 10% 41.7% NH 5% 28.3% 0.2314
NH 10% 41.7% H 5% 23.3% 0.0928
NH 5% 28.3% H 5% 23.3% 0.5543

Both homogeneity and stress size seem to play a large role on the probability of immediate impacts. In fact, about 68%
of the simulations in which the market was homogeneous and the stress size was 10% present immediate impact events.
The contribution of the stress size on such probability is expected, but the homogeneity behavior is complementing the
findings in Table 2. In the previous results the non-homogeneous markets created a larger drawdown slope. However,
when coupled with results from Table 3 we see that even thought heterogeneous markets may suffer more drastically
overall from a stress event, the impact is not as sudden and there is a smaller likelihood of an observed crash.

The conclusions related to the stress traders are the same i.e., the 1 stress trader creates immediate impact more often
than the 20 traders and there is no significant difference between the 20-trader cases.

Looking at the actual magnitude of the immediate impact, we see that larger stress traders (10%) produce an average
return drop of −0.5%, as opposed to −0.3% when the stress event size is 5%. The immediate impact is longer if the
market is less active, with an average of 43s against 26s on more active markets.

The stress traders characteristics affect the immediate impact event duration. When a single trader causes the stress
event, the average duration is 29s, while 20 simultaneous traders produce an average duration of 34s. These two
quantities are not significantly different. However, when 20 non-simultaneous traders cause the stress event, the average
duration of 45s is significantly different from the other two cases. This is as expected, as the sell-off in this scenario is
executed in waves instead of all at once.

5 Conclusion

In 2015, market participants reviewed the Regulation AT (CFTC, 2015) proposal. The proposed regulation required that
any algorithm needs to be tested in “laboratory conditions” before being put into practice. The tool is never explicitly
mentioned and the absence of such a tool meant that traders would test algorithms in a replica of a real exchange without
any market impact in effect backtesting paper trades. Further, implementing the algorithms in a system accessible to
regulators means that proprietary algorithms would be potentially analyzed by regulators.

In fact the CFTC Chairman J. Christopher Giancarlo had the following remarks at FIA Expo Chicago, Illinois, on
October 17, 2018:

As you know, Regulation AT was an initiative of my predecessor, Chairman Massad. My position
was and continues to be that, while there were some good things in the proposal, there were other
things that were unacceptable and perhaps unconstitutional, including that proprietary source code
used in trading algorithms be accessible without a subpoena at any time to the CFTC and the Justice
Department.
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At heart, Reg AT is a registration scheme that would put hundreds if not thousands of automated
traders under CFTC oversight, a role for which our agency has inadequate resources and capabilities.
While I share genuine concerns about the inevitability of some future market disruption exacerbated
by automated trading algorithms, there is nothing in Reg AT’s proposed imposition of burdensome
fees and registration requirements that will prevent such an event. The blunt act of registering
automated traders does not begin to address the complex public policy considerations that arise from
the digital revolution in modern markets. Worse is that it would give a false sense of security that the
CFTC had regulatorily foreclosed such market disruption, which is impossible. That is why I voted
against Reg AT. I do not intend to advance it in its current iteration. Giancarlo (2018)

This paper details SHIFT, a financial market replica with applications to learning and research. Our goal is to replicate
real market conditions rather than create a software specialized in agent-based modeling. SHIFT offers a unique
environment combining a real pricing mechanism, a distributed asynchronous market, and multi-asset support. We
believe that SHIFT may create an environment where algorithms can be tested and stressed in laboratory conditions. The
environment may be setup so that proprietary source code may be tested adequately in absence and without participation
of other market participants.

This paper describes the system architecture and discusses several use cases. We show how a simple setup may
reproduce known stylized facts of the financial markets such as leptokurtic return distributions and volatility clustering.
We investigate the resulting order book dynamics, and show that the system reproduces the known average shape of
the order book and statistics of the spread. We hope we convinced the reader that the resulting price process has very
similar characteristics to real price behavior.

We think one the most important contributions of the paper is studying how the price behavior is affected by the trading
agents characteristics. Finally, we analyzed a stress experiment in a statistical manner and we draw some interesting
conclusions. We found that having a single trader with a large order is more likely to produce a market crash than 20
traders liquidating the same order. However, the impact on the market of the 20 traders lasts longer and has a larger
impact on the price in the long term. A crash event in a non-homogeneous market (market in turmoil) has a larger long
term impact but it is less propitious to an immediate impact to the price than a crash in homogeneous market conditions.

Moreover, SHIFT has been successfully used in market microstructure classes at Stevens Institute of Technology for
over a year and plans for future editions of the algorithmic trading competition are under way. Students have the
opportunity to try out what they learn in class either by using the web interface or one of our APIs.

We envision a multitude of experiments to take advantage of our financial laboratory environment. Future work includes
analyzing market participants wealth evolution and many potential expansions.
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A Python API Examples

Here, we present some source code listings to showcase how easy it is to create a simple trading strategy using our
Python API10. Listing 1 exemplifies how to import our library (API), create a trader object, and how to connect
and disconnect from the system using the API functions. All the user code is written between the connect() and
disconnect() function calls. We show an example of a limit order creation and submission. Orders are created by
giving them a type (buy/sell), indicating the ticker traded, the order size, and price.

import s h i f t
t r a d e r = s h i f t . T r a d e r ( " myusername " )
t r a d e r . c o n n e c t ( " c o n n e c t i o n . c f g " , " mypassword " )
. . .
l i m i t _ b u y = s h i f t . Order ( s h i f t . Order . LIMIT_BUY , "CS1" , 1 , 1 0 0 . 0 0 )
t r a d e r . s u b m i t _ o r d e r ( l i m i t _ b u y )
. . .
t r a d e r . d i s c o n n e c t ( )

Listing 1: Python API: Connection Example

Listing 2 contains a very simplistic trading strategy. The strategy buys when price is under $95.00 and sells when price
is over $105.00. The get_portfolio_item() function is used to get the user’s current position in a given instrument.
The get_last_price() function is used to get the last traded price of a given symbol. Apart from the price limits,
the strategy only maintains a current position open, and it has to have a unit available when shorting. Further the code
will only work for up to 10 swings between $95.00 and $105.00. Obviously, other more complex strategies may be
developed, but we chose to present a simple logic to clearly illustrate the use of our API. The Trader class has a
multitude of methods developed in the API to interface with the exchange.

In this particular strategy, price is sampled every 5 seconds. During the 5 seconds the algorithm sleeps price may have
moved beyond the trading limits, possibly missing a trading opportunity. The API also provides the user the ability to
observe market changes by setting event handlers. An example is on_last_price_updated() in Listing 3. In this
code, a user-defined function will be called every time a price update is received from the exchange. The user can
determine which financial instrument had the price update and act accordingly. The API provides other such event
handlers.

10A full documentation of our API is available at: https://github.com/hanlonlab/shift-python/wiki.
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whi le num_t rades < 1 0 :
# s l e e p f o r 5 s e c o n d s
s l e e p ( 5 )
# g e t c u r r e n t p o s i t i o n i n CS1
c u r r e n t _ p o s i t i o n = t r a d e r . g e t _ p o r t f o l i o _ i t e m ( symbol ) . g e t _ s h a r e s ( )
# g e t l a s t t r a d e d p r i c e f o r CS1
l a s t _ p r i c e = t r a d e r . g e t _ l a s t _ p r i c e ( "CS1" )

i f c u r r e n t _ p o s i t i o n == 0 and l a s t _ p r i c e < 9 5 . 0 0 :
marke t_buy = s h i f t . Order ( s h i f t . Order .MARKET_BUY, "CS1" , 1 )
t r a d e r . s u b m i t _ o r d e r ( marke t_buy )

e l i f c u r r e n t _ p o s i t i o n > 0 and l a s t _ p r i c e > 1 0 5 . 0 0 :
m a r k e t _ s e l l = s h i f t . Order ( s h i f t . Order . MARKET_SELL, "CS1" , 1 )
t r a d e r . s u b m i t _ o r d e r ( m a r k e t _ s e l l )
num_t rades = num_t rades + 1

Listing 2: Python API: Simple Strategy

def l a s t _ p r i c e _ u p d a t e d _ e v e n t ( t r a d e r , symbol ) :
i f symbol == "CS1" :

# g e t c u r r e n t p o s i t i o n i n CS1
c u r r e n t _ p o s i t i o n = t r a d e r . g e t _ p o r t f o l i o _ i t e m ( symbol ) . g e t _ s h a r e s ( )
# g e t l a s t t r a d e d p r i c e f o r CS1
l a s t _ p r i c e = t r a d e r . g e t _ l a s t _ p r i c e ( "CS1" )

i f c u r r e n t _ p o s i t i o n == 0 and l a s t _ p r i c e < 9 5 . 0 0 :
marke t_buy = s h i f t . Order ( s h i f t . Order .MARKET_BUY, "CS1" , 1 )
t r a d e r . s u b m i t _ o r d e r ( marke t_buy )

e l i f c u r r e n t _ p o s i t i o n > 0 and l a s t _ p r i c e > 1 0 5 . 0 0 :
m a r k e t _ s e l l = s h i f t . Order ( s h i f t . Order . MARKET_SELL, "CS1" , 1 )
t r a d e r . s u b m i t _ o r d e r ( m a r k e t _ s e l l )

. . .
t r a d e r . c o n n e c t ( " c o n n e c t i o n . c f g " , " mypassword " )
t r a d e r . o n _ l a s t _ p r i c e _ u p d a t e d ( l a s t _ p r i c e _ u p d a t e d _ e v e n t )
. . .

Listing 3: Python API: Simple Strategy with Events
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