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Abstract
Advances in quantum computing and machine learning are likely 
to change the face of quantitative portfolio construction and risk 
management as we know it today, and the focal point will be op-
timization processes. While financial optimization theory is high-
ly sophisticated and complex, the current state of practice leaves 
much to be desired and may best be described as a patchwork quilt 
held together by band-aids and duct tape. On the horizon, however, 
are potential improvements in the analytical techniques underpin-
ning how optimization methods are used, including the promise of 
exhaustive searches using quantum computers and advances in 
pattern recognition available through structured machine learning. 
To understand the importance and promise of the new developments 
in technology for financial optimization, it is imperative to appreciate 
the state of current practice. Critical challenges exist in the internal 
consistency of volatility and correlation estimates given the mixed 
methods used in many quantitative practices. With the heightened 
occurrence of event risk coming from politics, policy, and disruptive 
innovation, common assumptions concerning the stability of vola-
tility regimes and correlation estimates are in question. Moreover, 

event risk can create short periods when bimodal expected return 
distributions dominate, often resulting in underestimation of the po-
tential for pricing gaps and volatility regime shifts. Future progress 
with exhaustive search optimization using quantum computers and 
structured machine learning offers the possibility of a much deep-
er assessment of the probabilities surrounding event risk, improved 
analysis of the potential presence of bimodal and other non-normal 
return distributions, and the construction of more robust portfolios 
to handle the extreme (or fat-tailed) risks that seem to be happening 
more and more often than traditional approaches tend to predict.

1 Disclaimer: All examples in this report are hypothetical interpretations of situations and 
are used for explanation purposes only. The views in this report reflect solely those of 
the authors and not necessarily those of CME Group or its affiliated institutions. This 
article and the information herein should not be considered investment advice or the 
results of actual market experience. 
 
Acknowledgement: We would like to offer our thanks and express our gratitude to 
Professor D. Sykes Wilford, Dr. Jose M. Quintana, and the late Professor Arnold Zellner 
for their practical applications of and contributions to using financial optimization in the 
real world despite the many challenges.
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INTRODUCTION

Challenges to optimization abound in the world of portfolio construc-
tion and financial risk assessment. While financial optimization the-
ory is highly sophisticated, with detailed theoretical attention paid 
to model construction and critical assumptions, the current state 
of practice leaves much to be desired, and may best be described 
as a patchwork quilt held together by band-aids or the ubiquitous 
duct tape. On the horizon, however, are some potential improve-
ments in the analytical techniques underpinning how optimization 
methods are used in both portfolio construction and financial risk 
management. From the promise of exhaustive searches using quan-
tum computers to the advances in pattern recognition available 
through structured machine learning, financial optimization methods 
are about to get a major makeover. Change may be coming, and it’s 
about time!

To understand the importance and promise of the new developments 
in technology for financial optimization, however, it is imperative to 
appreciate the state of current practice faced by portfolio managers 
and risk officers. Critical challenges exist in the internal consistency 
of volatility and correlation estimates given the mixed methods used 
in many quantitative practices. With the heightened occurrence of 
event risk coming from politics, policy, and disruptive innovation, 
common assumptions concerning the stability of volatility regimes 
and correlation estimates are in question. Moreover, event risk can 
create short periods when bimodal expected return distributions 
dominate, often resulting in underestimation of the potential for pric-
ing gaps and volatility regime shifts. Future progress with exhaustive 
search optimization using quantum computers and structured ma-
chine learning offers the possibility of a much deeper assessment 
of the probabilities surrounding event risk, improved analysis of the 
potential presence of bimodal and other non-normal return distribu-
tions, and the construction of more robust portfolios to handle the 
extreme (or fat-tailed) risks that seem to be happening more and 
more often than traditional approaches tend to predict.

Our research is divided into three sections. First, we go back to the 
father of Modern Portfolio Theory (MPT), Professor Harry Markow-
itz, and provide some perspective on his contributions. Second, we 
take a closer look at a few of the all too common practical approach-
es to financial optimization that fly in the face of critical assump-
tions embedded in the Markowitz approach. In our analysis of the 
common challenges to financial optimization that often lead to vast 
underestimations of risk and the construction of highly sub-optimal 
portfolios, we draw heavily from examples and illustrations taken 
from the U.K.’s June 2016 referendum to leave the European Union or 
“Brexit.” Lastly, we come back to our key themes of how two major 
technical advances – quantum computing and machine learning – 
are likely to change financial optimization practices for the better.

HARRY MARKOWITZ AND THE ASSUMPTIONS 
UNDERLYING MEAN-VARIANCE OPTIMIZATION
The pioneer of modern financial optimization for portfolio construc-
tion and risk assessment is without a doubt Professor Harry Mar-
kowitz, winner of Nobel Prize in Economics in 1990. What is amazing 
is that over 65 years after the Markowitz mean-variance optimi-
zation came into the financial world back in the early 1950s, most 
practically applied financial optimization problems are addressed 
with the creative use of band-aids and duct tape (including some 
especially sophisticated mathematical methods) to handle known 
challenges that were embedded in the key assumptions chosen by 
Professor Markowitz in his doctoral dissertation at the University of 
Chicago to make the optimization problem tractable and available 
for real world use.

While there is a large and highly sophisticated body of literature 
involving the use of mean-variance optimization in finance, we will 
spare the reader both the mathematics and a recitation of the ac-
ademic literature in favor of an intuitive review of some of the key 
challenges that scholars and practitioners have spent decades ad-
dressing. Our perspective is that an appreciation of the challenges 
of working with optimization methods in the real world effectively 
makes the case as to why a revolution in optimization methods finally 
is on the horizon. 

The brilliance of Professor Markowitz’s seminal work [Markowitz 
(1952)] in the 1950s was to recognize the role played by risk assess-
ment in valuing stock and analyzing portfolios, since investors were 
effectively constructing portfolios with considerable uncertainty 
about the future. Indeed, MPT effectively embraced the approach 
set forth by Professor Markowitz, as a key element in security anal-
ysis.

As Professor D. Sykes Wilford noted in his insightful review of the 
contribution of Professor Markowitz to MPT [Wilford (2012)]: “In 
fact, MPT is ubiquitous to all financial theory and practice. By the 
same token, often the implementations of MPT break many of the 
basic assumptions behind MPT (and Markowitz) thereby making the 
conclusions derived from these actions extremely misleading, and in 
many cases completely incorrect.”

Professor Wilford’s contribution was to underscore the need to take 
a challenging look at how practical applications of financial optimi-
zation techniques handle the sometimes heroic assumptions embed-
ded in the basic theory. This will be our approach here as well, and 
in so doing, we hope to set the stage for an appreciation of how 
quantum computing and machine learning are going to change the 
practice of portfolio construction and risk assessment – taking the 
real world closer to the theoretical world of Professor Markowitz.

The Capco Institute Journal of Financial Transformation
Digital Finance: At the Cusp of Revolutionizing Portfolio Optimization and Risk Assessment Systems
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THEORY TO PRACTICE WITH FINANCIAL OPTIMIZATION 
TECHNIQUES
While less appreciated, one of the more important research philoso-
phies of Professor Markowitz was his focus on practical, applicable 
versions of portfolio optimization. There was in the 1950s and 1960s, 
a controversy in academic circles over whether economics should 
be seeking precise and general solutions or whether good approx-
imations were acceptable. In his Nobel Lecture in 1990, Professor 
Markowitz commented on his approach and this debate [Markowitz 
(1991)]: “We seek a set of rules which investors can follow in fact - 
at least investors with sufficient computational resources. Thus, we 
prefer an approximate method which is computationally feasible to 
a precise one which cannot be computed. I believe that this is the 
point at which Kenneth Arrow’s work on the economics of uncer-
tainty diverges from mine. He sought a precise and general solution.  
I sought as good an approximation as could be implemented. I be-
lieve that both lines of inquiry are valuable” (bold added).

The practical approach of Professor Markowitz is where we start 
in our intuitive analysis of the challenges of portfolio optimization. 
We will focus on just a few critical assumptions commonly used in 
the current state of practice as we set up the case for the advances 
that will follow from quantum computing and machine learning. The 
critical assumptions we will review here include: (1) use of historical 
data to compute estimates for expected volatility and correlations 
while using a forward-looking method of creating expected returns; 
(2) use of the standard deviation as the common measurement for 
volatility; and (3) instability of the correlation matrix and existence 
of non-normal expected return distributions. All of these challenges 
are exposed in rather dramatic fashion with the presence of event 
risk. These intuitive discussions then lead us to illustrate our analy-
sis with examples taken from the study of the “Brexit” referendum 
in June 2016.

Dangers and challenges of relying on history 
To implement a Markowitz mean-variance optimization system, one 
needs expected values – that is, expected returns, expected volatil-
ities, and expected correlations – that are used to describe aspects 
of the subjective probability distribution representing the risks faced 
by investors. When it comes to expected returns, there is no short-
age of forward-looking quantitative and qualitative approaches. 
When turning to the expected volatilities and correlations, however, 
history is often used as a guide. There is a rarely used yet profound 
comment by Professor Markowitz on using history as a guide that 
bears remembering [Markowitz (1991)]: “The calculations . . . are the 
same as historical returns. It is not that we recommend this as a way 
of forming beliefs; rather, we use this as an example of distributions 
of returns which occur in fact” (bold added).

Using history as a guide for expected volatilities and correlations 
absolves the risk manager of any forecasting duties, yet subjects 
the owners of the underlying portfolio to very large error risk. There 
are good empirical reasons why many financial regulators require 
the disclaimer that “past performance is not necessarily a guide to 
future performance.” History is always informative, however, every 
episode is different, so history is simply not always a good guide for 
developing expectations. There are serious questions about what 
period of history to use, how far back to look, to what degree is it 
appropriate to give older observations less weight and recent obser-
vations more weight. These are all quantitative questions on the sur-
face that require subjective analysis, and they are beyond the scope 
of this research. We chose to place the focus on another challenge 
that is less well appreciated and yet potentially very dangerous. That 
is, the optimization problems get worse and the likelihood of risk un-
derestimation gets much larger when the use of a forward-looking 
expected return method is attached to using history for volatility and 
correlation estimations.

A common refrain in the computer world is “GIGO” or “garbage in, 
garbage out.” With optimization, the so-called garbage coming into 
the method bounces around the system in a highly networked man-
ner determined by the expected correlation matrix, and one is quite 
likely to observe “garbage in, and a landfill of waste coming out the 
other end” – in effect, mean-variance optimization takes GIGO to 
an exponentially higher power. The problem is the inconsistencies 
involving three types of inputs – expected returns, expected volatili-
ties, and expected correlations.

For example, if one has an aggressive expected return assumption 
for a given security, coupled to a historical set of data that do not 
reflect very much volatility, then this is asking for trouble in the 
mean-variance optimization space. The challenge arises from an 
interesting attribute of mean-variance computer systems – they ac-
tually believe what one tells them about expectations. Hence, if one 
provides an aggressive expected return with an expectation of little 
volatility, the mean-variance optimizer is going to produce a very 
large recommended exposure for the security. And then, the port-
folio manager or risk officer will look at the output of the mean-vari-
ance optimization, remark that the output fails the real-world smell 
test, and either discount the method or add a set of constraints de-
signed to create a more reasonable looking output.

This latter idea of adding constraints to optimization systems to 
achieve reasonable looking results is a very bad approach. Effec-
tively, the unreasonable output has been caused by the inconsis-
tency in the expected return and expected volatilities input into the 
optimizer. Rather than fix the inputs by adjusting expectations to 
make them more internally consistent, the common solution is to add 
constraints until the portfolio output passes the real world smell test. 

The Capco Institute Journal of Financial Transformation
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This is like diagnosing the patient as a crazy man, and then resorting 
to putting the patient in a straitjacket to get the desired behavior. The 
much better approach, in psychoanalysis and in optimization, is to 
address the source of the problems directly.

One approach is to use the implied volatility in options pricing. How-
ever, efficient and useful options markets may well not exist, and 
some options-pricing models have built-in assumptions related to 
stable or flat future returns. Another, simpler band-aid is to incorpo-
rate information from the return expectations into the expected vol-
atilities. That is, start with a measure of expected volatility, and then 
augment the volatility expectation based on the degree of aggres-
siveness of the expected return. With this approach, the mean-vari-
ance optimizer will see the aggressive return forecast, yet it will be 
coupled to a much larger expected volatility, so the exposure that 
is recommended in the optimized output will be much smaller and 
make more sense to the portfolio manager and risk officer.

Take the case of the U.K.’s June 2016 referendum on remaining in 
the European Union (E.U.) or leaving, known as “Brexit” (Figure 1). 
Prior to the vote on 23 June, the U.S. dollar (USD) was trading at 
around 1.42 against the British pound (GBP). If one thought the U.K. 
was going to vote to “leave,” a typical forecast for the USD per GBP 
was 1.32 or lower. And by contrast, the “remain” camp expected 
a relief rally and a rise in the pound toward 1.52 (USD per GBP) or 
higher. The historical volatility in the three weeks before the vote 
was only an annualized 9.8% (standard deviation), even though mar-
ket participants were looking for a one-day 7% or so move in one 
direction or the other depending on the outcome of the vote (i.e., 
a 5+ standard deviation event, one in a million event). As this case 
illustrates, and as the aggressiveness of the expected moves in the 
pound given the outcome of the vote suggested, a risk system or a 

portfolio construction system needed to augment the recent histori-
cal volatility to capture the risks appropriately.

Standard deviation may underestimate volatility and 
potential skewness
The previous intuition, augmenting expected volatilities with infor-
mation from the expected returns, raises another challenge. Is the 
standard deviation the appropriate proxy for the risk of the security 
returns in the first place? Again, and interestingly, the use of the stan-
dard deviation was chosen by Professor Markowitz back in the 1950s 
to represent risk because of its practical attributes. The standard de-
viation was straightforward to calculate from historical data and the 
standard deviation fit neatly into the mathematics of mean-variance 
optimization. There were other important side-effects of this choice. 
The standard deviation easily leads to embedding into the closed-
form mean-variance optimization method the assumption of a normal 
or log-normal distribution of expected returns. Thus, we focus on at 
least two challenges here, (1) the standard deviation as often cal-
culated from historical data may underestimate future volatility, and 
(2) the probability distribution of returns may well have considerable 
skewness (that is, fat-tailed event or “black swan” potential).

There are a couple of duct tape solutions available. First, the risk 
officer can embrace the need to take a forward-looking view of po-
tential risks and incorporate them into the quantitative inputs for ex-
pected volatility. That is, when the future looks especially risky, de-
spite the current calm state of markets, risk managers may choose 
to qualitatively augment their estimates of future volatility. We highly 
recommend this approach, as risk officers should not be able to 
hide behind historical calculations when such approaches are well 
known to underestimate risk and to understate the probability and 
frequency of highly skewed market events.

Second, one can look at alternative approaches for volatility mea-
surement, such as looking at intra-period swings in prices. For ex-
ample, if one is willing to assume a normal distribution of returns, 
then there is a deterministic mathematical relationship between the 
intra-period high/low price spread and the period-to-period stan-
dard deviation [Garman and Klass (1980); Parkinson (1980)]. If these 
two measures start to deviate in a meaningful way, then a market in-
dicator can be constructed which incorporates the information from 
intra-period trading activity that may point to market participants 
worrying about more future volatility potential than the standard de-
viation suggests.

Again, by illustration, “Brexit” provides an interesting case study. 
In the weeks and months leading up to the “Brexit” referendum, 
as already noted, volatility, as measured by the standard deviation 
of daily percent changes in the USD:GBP exchange rate, suggest-
ed only modest risks more typical of “business as usual” activity. 
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Figure 1 – The impact of Brexit on USD:GBP exchange rate
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By contrast, in the pre-vote period, the intra-day price swings, as 
measured by the daily high and lows recorded in the nearby Brit-
ish pound futures contract price as traded on CME Group’s Globex® 
electronic platform, suggested much higher risk. And, when the ad-
justed intra-day high-low price spread2 is well-above the volatility 
estimate given by the standard deviation of closing price changes, 
then one has an indication that market participants are worried 
about a skewed or fat-tailed event occurring.

Interestingly, once the vote occurred and the outcome was known, 
the difference in volatility measures from these two techniques dis-
appeared (Figure 2). Essentially, market activity reflected the fact the 
event had occurred and that another similar event was not expect-
ed. That is, the storm was a big one, but once it had passed by, the 
“worry” indicator slipped into neutral.

Instability of correlations and possibility of non-normal 
return distributions
Market participants quite often have to deal with the prospects of 
event risk. For example, corporation A makes a bid to acquire corpo-
ration B. However, the bid, even after being accepted by corporation 
B, needs regulatory approval, which may well be quite controversial. 
The event of the regulatory decision may be binary and result in the 
termination or consummation of the announced deal. Before the reg-
ulatory decision is announced, the stock prices of corporations A 
and B will reflect the probabilities of the deal terminating or consum-
mating, meaning that the market price of the stock before the deal 

will not fully reflect the announced deal price if the probability of ter-
mination is greater than zero. After the regulatory decision, the stock 
price moves instantly to reflect whether the deal is going through or 
ending. Political event risk can look much the same, as it did with the 
binary “Brexit” vote. What we are describing here is the likelihood 
that event risk creates the possibility of bimodal return probability 
distributions [Putnam (2012)]. A distribution with two modes, where 
one mode is usually lower and far away from the higher mode, is a 
strikingly different subjective probability distribution than the normal 
distribution which is embedded in many risk assessment and portfo-
lio construction systems.

During the pre-event stage, market prices of securities likely to be 
impacted by the event will move when expected probabilities of the 
binary outcomes shift. This means that the typical drivers of market 
prices, and thus observed correlations, may be highly distorted by 
the very different drivers of the shifts in subjective probabilities re-
lated to the event in question. That is, in more typical times, earnings 
expectations might drive the prices of stocks A and B. Once the ac-
quisition is announced, the earnings matter much less, and the ebb 
and flow of news and views about the regulatory process that will 
approve or deny the acquisition take precedent.

As can be appreciated, the apparent increasing frequency of event 
risk, especially related to political events and policy decisions, is 
complicating the challenges of portfolio construction and risk as-
sessment. A common practical solution, and one we endorse, is 
stress-testing with various scenarios reflecting the nature of the 
event risk about which one is worried. Critically though, the scenar-
ios should be assigned subjective probabilities [Karagiannidis and 
Wilford (2015)]. It is pathetically easy to ask 20 questions or develop 
some interesting scenarios, but stress-testing has no meaning or 
useful application if subjective probabilities are not attached to the 
scenarios. Again, we see that the risk officer has to be forward-look-
ing and probabilistic. 

In addition, some market participants may be drawn to adopt options 
strategies to manage risk related to upcoming events. Options are 
favored in this regard because they embed a view of volatility in their 
price. We are strong supporters of options as a tool to manage event 
risk. However, we note that some additional sophistication may be 
required when event risk is present. Options behave differently when 
confronted with event risk than one might suspect if using an options 
pricing model derived from the basic Black-Scholes approach. We 
mention this because it highlights one of our key themes – namely, 
watch out for embedded assumptions. The Black-Scholes options 
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2 Adjusted for the difference in volatility measurement between standard deviation and 
high-low swings.
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pricing method [Black and Scholes (1973); Merton (1973)] in its origi-
nal and basic form makes a number of heroic assumptions designed 
to simplify the mathematics and allow one to use an options-repli-
cating approach to value the option. 

When event risk is present, two critical assumptions are likely to be 
violated and both have profound implications for the price of the op-
tion and the implied volatility expectation embedded in the option 
price. Event risk raises the prospect of both an instantaneous price 
jump and a major shift in the volatility regime after the event occurs. 
That is, one can sometimes observe deceptively calm markets as 
they wait on the event to happen, such as the release of an important 
piece of economic data, a merger-and-acquisition regulatory deci-
sion, a political election, or referendum. Once the outcome is known, 
though, the price jumps with no intervening trading to its new equi-
librium, reflecting the new reality based on the event outcome, and 
the volatility regime also shifts to reflect the new post-event reality. 
Basic Black-Scholes assumes no price jumps (i.e., continuous trad-
ing) and no volatility shifts (i.e., homoscedasticity). When these two 
assumptions are violated, traditional delta hedging strategies will 
fail miserably and basic options models will underestimate volatili-
ty. Fortunately, there are many options pricing models available, al-
though quite complex, that deal with these known challenges [Cox et 
al. (1979)]. Unfortunately, many risk assessment systems do not use 
these complex option pricing models and instead embed assump-
tions of normal distributions, no price jumps, no volatility shifts, and 
stable correlation structures. No wonder these systems are “sur-
prised” by how many “100-year” floods seem to occur in just one or 
two decades, instead of the expectation of one per century.

As an aside, relating to previous discussions, price jumps are es-
pecially confusing for volatility measurement systems that only look 
backwards. The price jump creates a one or two-day period where 
the standard deviation calculation will be extreme; sometimes four 
or five standard deviations from previous history, and then it settles 
into a new pattern that is elevated from previous history but not off 
the charts. From a behavioral finance perspective, what market par-
ticipants appear to do is to start to discount the event – meaning 
that its impact on expectations of future volatility starts to diminish, 
and sometimes rather quickly unless there is good reason to think 
lightning will strike twice in the same place. Any historically-based 
volatility measurement system needs to consider whether older data 
should be more-heavily discounted, or be given equal weight. For 
example, if one uses a fixed time period for the look back, say three 
months, then there will be a spike upward when the event occurs in 
the volatility measure, followed by an “unexplained” reversal when 
the three-month period ends and the price-gap day drops out of the 
backward-looking volatility calculation. Bayesian techniques easily 
handle time decay parameters, as do exponentially-lagged time de-
cay systems. We highly recommend them.

Back to considering bimodal distributions and their challenges, 
and again, “Brexit” is a good example of the potential for a bimod-
al expected return distribution prior to the vote date (Figure 3). As 
noted earlier, a “leave” vote was expected to weaken the British 
pound and “remain” vote was expected to lead to a relief rally and 
a strengthening pound. What market participants were trying to do 
was gauge the probabilities of one outcome versus the other. Since 
the range of probabilities ran more or less from a coin flip to about 
60/40, this was a classic case of a bimodal expected return distribu-
tion. Of course, once the vote occurred and the outcome was known, 
the new expected return distribution collapsed almost instantly back 
into a typical single-mode probability distribution. 

Moreover, the process of collapsing back into a single-mode expect-
ed return probability distribution had the ability to disturb correla-
tions for a few days. On the 24th and 27th of June 2016, the Friday 
and Monday after the UK’s vote to leave the European Union, the 
British pound fell 7% and 2%, respectively, while other risky assets, 
such as equities, also declined, with even the U.S. S&P500® Index 
falling 3% and 1%, respectively, while most European equity indexes 
had sharper falls on the 24th. In the weeks afterwards, though, U.S. 
equities resumed their climb to new highs, while the British pound 
did not recover, although it stopped falling and traded in a relatively 
narrow range. In effect, during the disruption, correlations between 
the British pound and equity indexes were sharply positive, and then 
fell back toward zero in the weeks after the referendum. Portfolio 
construction or risk analysis that failed to consider the possibility 
of a bimodal expected return distribution collapsing back into a sin-
gle-mode distribution after the event would have underestimated 
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potential volatility, not necessarily have anticipated a gap or price 
jump as the outcome was announced, and would have missed some 
very critical correlation shifts. 

FUTURE OF FINANCIAL OPTIMIZATION

Two evolving techniques for data analysis are likely to greatly im-
prove risk assessment and portfolio construction – namely, ex-
haustive search using quantum computers and advances in pattern 
recognition available through structured machine learning. We will 
start with a discussion of optimization with quantum computers, al-
though this approach is going to take another five years or so before 
the computers move from the experimentation phase to being large 
enough for operational use. Machine learning is already here and 
gaining ground fast on traditional risk assessment techniques.

Quantum computing is on the way
Quantum computers can be purpose built, and there are a number 
of experiments on-going in academic labs. To move from the lab 
to the real world, there is a commercially available quantum com-
puter using an annealing process to solve optimization problems 
offered by D-Wave Systems of Vancouver, Canada. 1QBit, another 
Vancouver-based company, is creating software that allows one to 
utilize the new quantum computers without having to be a quantum 
computing expert to leverage the best known methods for interact-
ing with quantum hardware. Their software development kit (SDK) 
enables the rapid and systematic development of higher-level ap-
plications that are compatible with both classical and quantum pro-
cessors. In additional, major computing companies, such as Google, 
Microsoft, and IBM are known to be experimenting in various ways 
with quantum computing.

The difference in how quantum computers work compared to classi-
cal computing is quite amazing and fascinating. Classical computers 
have bytes that hold a zero or a one. Quantum computers have qubits 
that hold a zero or a one as well as a second piece of information 
that can be intuitively thought of as a probability that the information 
is a zero or a one. To solve an optimization problem, the quantum 
computer does not add, subtract, multiply, and divide like a classical 
computer; instead it uses a process known as quantum annealing 
to seek the lowest energy state based on how the information in the 
qubits is arranged. That is, the second piece of information in the 
qubits allows for quantum effects, including tunneling, not possible 
in classical computers. Tunneling is the concept in quantum physics 
of a particle moving through a barrier that would not be possible in a 
classical system. Suffice it to say, explaining quantum computing is 
well past the scope of this research, however, for optimization, the 
demonstration of quantum effects represents a huge step forward.

Optimization with quantum computers offers the promise of solving 
certain problems that have traditionally been challenging for classi-
cal computers using a process that exhaustively searches problems 
known as “quadratic unconstrained binary optimizations,” or qubos. 
In a classical computer, a complex optimization problem such as a 
qubo is solved by way of iteration to achieve a close, but estimated 
answer. In a quantum computer, exhaustive search finds the exact 
answer. For many uses, the estimated optimal solution from a clas-
sical computer may work fine, if the practitioner is artful in how the 
problem is set up and how the embedded assumptions are handled. 
However, the promise of quantum computing is to free the research-
er from having to make some difficult and often wrong simplifying 
assumptions. In finance, these difficult optimization problems ap-
pear in areas such as asset clustering, cash flow modeling, taxation, 
and portfolio risk decomposition. We should caution, though, that 
appreciating the characteristics of the return distribution and how 
it changes will remain critical to developing robust, forward-looking 
risk assessments. Quantum computing is going to offer some incred-
ibly important new tools for risk analysis and portfolio construction; 
however, it is unlikely to provide good answers without an expert at 
the helm.

Machine learning is here
Machine-learning techniques are essentially a highly sophisticated 
and advanced pattern recognition system. They constitute methods 
that involve cleaning (harmonizing) the data, building the model on 
known data (also known as “training” phase), optimizing the model, 
and then applying the model on unseen data (often called “testing” 
phase). The beauty of these algorithms is that they need not be pro-
grammed for all the data out there. They learn as and when they see 
new datasets and evolve. All the machine learning algorithms are 
categorized into one of these two categories:

■■ Supervised learning: the datasets that belong to supervised 
learning techniques already have a “label” (outcome/prediction 
variable) attached to them. Most of the classification and regres-
sion problems are categorized as supervised learning techniques.

■■ Unsupervised learning: these algorithms aim at the descriptive 
nature of the data rather than classifying them. Data exhibits cer-
tain characteristics and patterns over a period of time (in case of 
time-series data) and techniques like clustering and association 
rules help identify them.

One can develop algorithms for machine learning that are unstruc-
tured or structured. The unstructured systems are essentially “fre-
quentist” methods, where the data is asked to speak for itself without 
expert advice. The unstructured methods are likely to be most popu-
lar; simply because they are easy to use and open-source software is 
available. Unstructured machine learning is great for descriptive an-
alytics; however, as one moves into the world of predictive systems, 
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the unstructured methods are likely to appear extremely successful 
in back-testing and suffer from a myriad of problems in actual prac-
tice – not unlike the challenges facing current practices in financial 
optimization when history is not necessarily a good guide.

Machine learning has been heavily linked with “big data.” Initially, 
much of the research in finance is aimed at discerning new trends 
and augmenting security returns forecasts with all kinds of new 
information not previously available – hence, the term “big data.” 
Data is growing at an enormous rate. “Big data” is usually charac-
terized by the three basic Vs – volume, variety, and velocity. (There 
are of course other Vs added over time – value, veracity, etc.) The 
datasets can be from different sources (i.e., variety), can be in mo-
tion (real-time data demonstrating velocity), can use different data 
architecture, and they can still inform a machine learning process. 
Apache has a lot of open-source projects that have gained popular-
ity in recent years. Apache Spark, an in-memory distributed comput-
ing platform is worth mentioning. Spark can scale financial modeling 
and optimization which includes calculating Value-at-Risk (VaR) to 
fit models, run simulations, store, and analyze results in the cloud.3

Structured machine learning methods allow for different types of ex-
pert information to guide the learning process. The combination of 
expert advice and sophisticated pattern recognition systems offers 
tremendous process for forecasting financial variables – from re-
turns to volatilities to correlations and beyond. And, machine learn-
ing is not necessarily tied to the straitjacket of time series data, so 
pattern recognition processes can be much more creative in how 
the historical data is interpreted. 

Pattern recognition with financial data does come with some special 
challenges, and one of the biggest is that the data is exceptionally 
noisy. With classical statistical regression techniques, one observes 
the noisy data by finding only relatively weak fits for the modeling 
of daily returns. With machine learning, the existence of relatively 
noisy data will put a greater premium on how one sets the various 
parameters that filter the pattern or how one adds expert advice to 
the system. This will be essential for the forward-looking results to 
add substantial value, and it will not be easy.

The advances from machine learning for quantitative finance are 
already making themselves felt in sales forecasting and marketing 
techniques; however, this is just the beginning of a revolution. For fi-
nancial optimization, structured machine learning promises more ro-
bust forecasting tools, for expected returns, and using more diverse 
measures of volatility for risk assessment, while allowing for very 
creative assessments of stylized (structured) correlation patterns. 
The era of parallel and distributed computing is here, which makes 
it possible for computations to scale and provides the ability to make 
predictions at a granular level. Hence, financial optimization will look 

totally different in just a few years as the new tools permeate the 
industry and change an age-old mindset about portfolio construction 
and risk assessment.
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