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D E A R  R E A D E R ,



In my new role as CEO of Capco, I am very pleased to welcome 
you to the latest edition of the Capco Journal, titled Balancing 
Innovation and Control.

The � nancial services and energy sectors are poised for 
another transformative year. At Capco, we recognize that this is 
a new era where innovation, expertise, adaptability, and speed 
of execution will be valued as never before. 

Success will be determined based on exceptional strategic 
thinking, and the ability to leverage innovative new technology, 
including GenAI, while balancing a laser focus on risk and 
resilience. Leaders across the � nancial services and energy 
industries recognize the transformative bene� ts of strong 
governance while needing to � nd the optimal balance between 
innovation and control.

This edition of the Capco Journal thus examines the critical 
role of balancing innovation and control in technology, with 
a particular focus on data, AI, and sustainability, with wider 
corporate governance considerations. As always, our authors 
include leading academics, senior � nancial services executives, 
and Capco’s own subject matter experts.

I hope that you will � nd the articles in this edition truly thought 
provoking, and that our contributors’ insights prove valuable, 
as you consider your institution’s future approach to managing 
innovation in a controlled environment.

My thanks and appreciation to our contributors and our readers.

Annie Rowland, Capco CEO
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In � nance, machine learning (ML) and deep learning (DL) have 
been applied extensively to credit risk modeling (e.g., default 
prediction) due to the availability of a large quantity of data. 
Butaru et al. (2016) have applied machine learning to credit 
cards. Sadhwani et al. (2021) have applied deep learning to 
mortgage risk. These have largely been focused on forecasting 
delinquency or defaults.

Traditionally, econometrics has also analyzed data and built 
models. In contrast to data scientists, econometricians have 
traditionally focused signi� cantly on statistical inference. 
Biddle (2017) provides an overview of how statistical inference 
has changed over time. His de� nition of statistical inference 
– “the process of drawing conclusions from samples of 
statistical data about things that are not fully described or 
recorded in those samples” – describes what econometricians 
do fairly well.

ABSTRACT
Machine learning methods, the foundation of much of arti� cial intelligence (AI), are now widely used in data analysis and 
model-building across a variety of disciplines. These techniques have also become the underpinnings of many of the 
business intelligence (BI) analytics that are being widely deployed across a wide range of industries. In this article, we 
focus on some elements of inference around analytics possible in machine learning, contrasting them with how applied 
econometricians traditionally approached inference. We do this in the context of applying both traditional econometric 
methods and several machine learning methods to the same dataset.

USE AND MISUSE OF INTERPRETABILITY 
IN MACHINE LEARNING1

1. INTRODUCTION

Machine learning methods, the foundation of much of 
arti� cial intelligence (AI), are now widely used in data analysis 
and model-building across a variety of disciplines. These 
techniques have also become the underpinnings of many of 
the business intelligence (BI) analytics that are being widely 
deployed across a wide range of industries.2

With freely available software such as Keras, Tensor� ow from 
Google, lightGBM from Microsoft, and Torch from Facebook, 
the techniques have also become widely available. The 
provision of such open-source software, accompanied by 
the rise of cloud-based platforms from Amazon, Google, 
Microsoft, etc., have signi� cantly reduced the need to build 
out hardware infrastructure. Historically, machine learning has 
focused much more on prediction than on statistical inference 
around analytics. 

1   Views and opinions expressed are those of the authors and do not necessarily represent of� cial positions or policy of the Of� ce of the Comptroller of the 
Currency or the U.S. Department of the Treasury.

2  Korolov, M., 2018, “New AI tools make BI smarter — and more useful,” CIO Magazine, April 18, http://tinyurl.com/yuuszz9k
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Data scientists have frequently come from quite 
heterogeneous backgrounds and with signi� cant differences 
from econometricians. Using data from LinkedIn, Stitch Data 
(2015) summarizes the background of data scientists and 
� nds that computer science is the most common background. 

3  Merrill, D., 2019, “CEO ZestFinance, Testimony to the House Committee on Financial Services AI Task Force,” June 26, http://tinyurl.com/y845wptd

Figure 1: Shapley values based on lightGBM
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 Figure 2: Shapley values based on XGBOOST
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 Figure 3: Shapley values based on deep learning/Keras
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Segaran and Hammerbacher (2009) has an interesting article 
by Jeff Hammerbacher, who supposedly coined the term “data 
scientist” while leading the data team at Facebook on the 
eclecticism in the data science backgrounds.

In this article, we focus on some elements of inference around 
analytics possible in machine learning, contrasting them 
with how applied econometricians traditionally approached 
inference. We do this in the context of applying both traditional 
econometric methods and several machine learning methods 
to the same data set.

This is the publicly available FNMA 30-year � xed rate 
mortgages. We then compare and contrast what drivers of risk 
are identi� ed using some traditional econometric methods as 
well as different machine learning methods.

Parallels to statistical inference in machine learning/deep 
learning models are currently focused very heavily on the 
twin concepts of interpretability/explanability. Most commonly 
promoted explanability metrics have been Shapley value 
and feature importance. For example, the AI platforms of 
both Google and Microsoft provide Shapley values for users 
to understand what drives the models as well as to identify 
model bias. Vendors, such as ZestFinance and DataRobot, 
have also promoted Shapley value as the way to “break open 
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the blackbox.”3 The academic literature on machine learning 
has also focused on signi� cance tests based on Shapley 
values and/or feature importances. For example, Horel and 
Giesecke (2020) develop an asymptotic theory for neural 
networks using gradients from the � tting algorithms.

Our exploratory analysis in this paper shows that different 
state-of-the-art machine learning methods can produce 
models that are similar in their predictive abilities. However, 
commonly used interpretability metrics can lead to different 
conclusions about the key risk drivers.

2. DATA

We use the Single-Family Historical Loan Performance Dataset 
from FNMA. We select the loans originated in the years 2000, 
2001, and 2002. The outcome we model is the probability 
of a loan becoming 90 days past due in the � ve years after 
origination. We also combine the national level macroeconomic 
variables HPI Index, Unemployment Rate, Labor Force, and 
Non-farm Payroll. These are expressed as growth rates and 
their � rst two lags are used. For the categorical variables, we 
create dummies, or what is referred to in machine learning as 
one-hot encoding.

3. RESULTS

We � rst apply two most commonly used machine learning 
algorithms, XGBOOST and lightGBM, and secondly deep 
learning with Keras. We optimize the hyper-parameters by grid 
search. The performance of the three algorithms, as measured 
by the area under the curve (AUC), is quite similar. We then 
plot the Shapley values for the features in three � gures. These 
are for lightGBM in Figure 1, XGBOOST in Figure 2, and Keras 
in Figure 3.

As can be seen in these � gures, there are very signi� cant 
overlaps between the three methods. However, there are 
also important differences. The two methods, lightGBM 
and XGBOOST, broadly select the same set of borrower 
characteristics in the top � ve. However, XGBOOST 
selects lagged unemployment rate as the eighth most 
signi� cant driver. In contrast, lightGBM does not have any 
macroeconomic variables in the top ten drivers. Deep learning 
via Keras has a very different set of features selected as the 
most important ones based on Shapley values.

We then use econometric methods to identify what drives 
default. We choose the Elasticnet method, which was 
proposed by Zou and Hastie (2005) and has been used in 
more than 20,000 studies. The Elasticnet method bridges 
the “least absolute shrinkage and selection operator” LASSO 
method and ridge regression.

min ||y − Xβ||2 subject to ∑m
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| <_ t

1
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j
< t
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Elasticnet ends up with 16 variables or features. We then run 
a logistic regression with the selected features. The results 
are presented in Table 1. These results show that Elasticnet 
� nds signi� cantly greater importance for the macroeconomic 
variables. Lagged Nonfarm Payroll growth and unemployment 
rate show up as the third and fourth most important variables.

4. CONCLUSION

Using single family mortgage data, we � nd that different 
machine learning algorithms can produce rather different 
rankings of the variables that drive the outcome of interest. 
This suggests that one needs to exercise caution in relying on 
these methods in terms of identifying the drivers of risk.

Table 1: Results from estimating logistic regressions 
for mortgage delinquency 

VARIABLE PARAMETER STD. ERROR. WALD Χ2

Intercept 4.860 0.176 759.02

cscore_mn -0.016 0.000 16070.73

l1NF growth 5.541 0.600 85.42

l2unemplrate 0.028 0.005 36.02

mi pct 0.013 0.001 251.29

numbo -0.791 0.015 2740.16

ocltv 0.018 0.001 433.90

orig amt 0.000 0.000 975.22

orig chn B 0.208 0.019 117.21

orig chn R -0.066 0.018 13.69

orig rt 0.383 0.015 634.05

prop typ CO -0.376 0.046 66.71

prop typ CP -0.605 0.128 22.46

prop typ MH 0.813 0.057 201.27

prop typ SF 0.101 0.032 10.06

purpose P -0.591 0.022 700.70

purpose R -0.028 0.024 1.35

This table reports the parameter estimates from a logistic regression of key 
drivers of mortgage delinquency that had been identi� ed via an Elasticnet 
regression. The sample had been divided into 80% training and 20% valida-
tion subsamples. The variables are � rst selected via an Elasticnet method. A 
logistic regression is run with the top 21 selected variables and the results are 
presented below. The out of sample AUC is 0.852.
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APPENDIX

Table A1: This table lists the features (i.e., variables) from the FNMA data

FEATURE DESCRIPTION

cscore_mn Borrower credit score; FICO score.

last_upb The current actual outstanding unpaid principal balance of a mortgage loan, re� ective of payments actually received 
from the related borrower.

mi_pct The original percentage of mortgage insurance coverage obtained for an insured conventional mortgage 
loan and used following the occurrence of an event of default to calculate the insurance bene� t.

mi_type “The entity that is responsible for the Mortgage Insurance premium payment. 
1 = borrower paid; 2 = lender paid; 3 = enterprise paid; * Null = No MI”

num_bo The number of individuals obligated to repay the mortgage loan.

num_unit The number of units comprising the related mortgaged property (one, two, three, or four).

occ_stat The classi� cation describing the property occupancy status at the time the loan was originated. 
Principal = P; second = S; investor = I; unknown = U

ocltv The ratio, expressed as a percentage, obtained by dividing the amount of all known outstanding loans at origination 
by the value of the property.

orig_amt Origination amount

orig_chn Origination channel: retail = R; correspondent = C; broker = B

orig_rt The original interest rate on a mortgage loan as identi� ed in the original mortgage note.

orig_trm Original term

prop_typ “Property type: CO = condominium CP = co-operative PU = Planned Urban Development MH = manufactured home 
SF = single-family home”

purpose “An indicator that denotes whether the mortgage loan is either a re� nance mortgage or a purchase money mortgage. 
Cash-Out Re� nance = C Re� nance = R Purchase = P Re� nance-Not Speci� ed = U”

dti The ratio obtained by dividing the total monthly debt expense by the total monthly income of the borrower 
at the time the loan was originated.
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