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DEAR READER,



Welcome to edition 49 of the Capco Institute Journal of 
Financial Transformation.

Disruptive business models are re-writing the rules of 
our industry, placing continuous pressure on � nancial 
institutions to innovate. Fresh thinking is needed to break 
away from business as usual, to embrace the more 
rewarding, although more complex alternatives. 

This edition of the Journal looks at new digital models 
across our industry. Industry leaders are reaching 
beyond digital enablement to focus on new emerging 
technologies to better serve their clients. Capital markets, 
for example, are witnessing the introduction of alternative 
reference rates and sources of funding for companies, 
including digital exchanges that deal with crypto-assets. 

This edition also examines how these alternatives are 
creating new risks for � rms, investors, and regulators, 
who are looking to improve investor protection, without 
changing functioning market structures. 

I am con� dent that you will � nd the latest edition of the 
Capco Journal to be stimulating and an invaluable source 
of information and strategic insight. Our contributors are 
distinguished, world-class thinkers. Every Journal article 
has been prepared by acknowledged experts in their 
� elds, and focuses on the practical application of these 
new models in the � nancial services industry.

As ever, we hope you enjoy the quality of the expertise 
and opinion on offer, and that it will help you leverage your 
innovation agenda to differentiate and accelerate growth. 

Lance Levy, Capco CEO
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YOGESH MALHOTRA  |  Chief Scientist and Executive Director, Global Risk Management Network, LLC

Supported by a budget of U.S.$70 million, Project Maven, 
executed in collaboration with AI researchers from 
industry, aimed to achieve the distinction of deploying AI 
deep neural networks (DNNs) in active combat theater 
within six months from launch. Given that defense 
intelligence services are “drowning in data,” AI and DL 
technologies, such as DNNs, provide essential respite by 
automating tedious work activities, such as counting cars, 
individuals, and, activities, and typing their counts into 
PowerPoint � les and MS-Excel spreadsheets. The success 
of the project was bolstered by building partnerships with 
AI experts in industry and academia and with Department 
of Defense (DoD) communities of drone sensor analysts. 

ABSTRACT
This article discusses how model risk management in operationalizing machine learning (ML) or algorithm deployment can be applied in national 
systemic and cyber risk management projects such as Project Maven. After an introduction about why model risk management is crucial to 
robust AI, ML, deep learning (DL), and neural networks (NN) deployment, the article presents a knowledge management framework for model 
risk management to advance beyond “AI automation” to “AI augmentation.”

AI AUGMENTATION FOR LARGE-SCALE 
GLOBAL SYSTEMIC AND CYBER RISK 
MANAGEMENT PROJECTS: MODEL 
RISK MANAGEMENT FOR 
MINIMIZING THE DOWNSIDE RISKS 
OF AI AND MACHINE LEARNING

1. INTRODUCTION: PROJECT MAVEN

Project Maven, also known as “algorithmic warfare 
cross-functional team” (AWCFT), represents one of the 
� rst operational applications of Arti� cial Intelligence (AI), 
Machine Learning (ML), Deep Learning (DL), and Neural 
Networks (NN) technologies in defense intelligence. Its 
operational focus is on the analysis of full-motion video 
data from tactical aerial drone platforms, such as the 
ScanEagle, and medium-altitude platforms, such as the 
MQ-1C Gray Eagle and the MQ-9 Reaper. As noted by 
Maven CO, Air Force Lt. Gen. Jack Shanahan, “Maven 
is designed to be that pilot project, that path� nder, that 
spark that kindles the � ame front of arti� cial intelligence 
across the rest of the Department.”
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Collaboration with top AI talent from outside the defense 
contracting base facilitated accelerated adoption of 
commercial AI, ML, and DL technologies. The above 
project focused on development of agile iterative product 
prototypes and underlying infrastructures along with 
ongoing user community testing. In addition, key AI 
system development activities, such as labeling data, 
developing AI-computational infrastructure, developing 
and integrating neural net algorithms, and receiving user 
feedback, were all executed iteratively and in parallel. AI 
techniques for imagery analysis are extremely capable, 
yet developing algorithms for speci� c applications is not 
simple. For instance, AI systems require labor-intensive 
classi� cation and labeling of huge datasets by humans 
for training of DL algorithms. 

Maven needed individual labeling of more than 150,000 
images for its � rst training datasets, with plans to have 
1 million images labeled by January, 2018. Throughout 
the DoD, every AI successor to Maven will need a similar 
strategy for acquiring and labeling a large training dataset. 
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Maven’s success is clear proof that AI-ML-DL is ready to 
revolutionize many national security missions. Having met 
sky-high expectations of the DoD, it is likely to spawn 
100 copycat “Mavens” in DoD C4I (Command, Control, 
Communications, Computers, and Intelligence).

2. ARTIFICIAL INTELLIGENCE, MACHINE 
LEARNING, DEEP LEARNING AND 
NEURAL NETWORKS

Project Maven focused on autonomous classi� cation 
of objects of interest from still or moving images 
using computer vision enabled by AI, ML, and DL. MIT 
management scientist Tom Malone de� nes AI in intuitive 
terms, such as “machines acting in ways that seem 
intelligent.” MIT computer scientist Patrick Winston notes 
that: “AI is about the architectures that deploy methods 
enabled by constraints exposed by representations that 
support models of thinking, perception, and action.”1 In 
contrast to general AI, which can solve many different 
types of problems, as humans do, most AI systems are 
narrow AI machine-based systems with the capabilities 
of addressing a speci� c problem, such as playing Go 
or chess.

According to MIT computer scientist Tommi Jaakkola, 
ML deals with computer programs that try to learn from 
experience for prediction, modeling, understanding data, 
or controlling something.2 In the case of Project Maven, 
such ML is from a training set of labeled examples 
of images of objects to make future predictions for 
classifying instances of such objects. As computers 
process data as bits, images need to be translated into 
geometrical representations called “feature vectors” 
composed of such bits. Feature vectors are essentially 
arrays containing numeric identi� ers representing the 
speci� c attributes or features of the respective object. The 
problem is hence translated from a set of images into a 
set of vectors: a vector being a two-dimensional matrix 
with only one row but multiple columns of numeric data. 

The training set contains a set of labeled vectors and the 
test set contains a set of images to be classi� ed consisting 
of unlabeled vectors to match with respective labels. Using 
vectors and labels, ML algorithm translates the problem 
into a geometric form wherein each vector represents 
a point in n-dimensional space. The solution involves 
developing an ML algorithm to divide n-dimensional 
space into speci� c parts, each of which corresponds to a 
speci� c label. For image classi� cation, such geometrical 

1  MIT AI-Machine Learning Executive Guide: including Deep Learning, Natural Language Processing, 
Autonomous Cars, Robotic Process Automation: https://bit.ly/2PX� QH, MIT AI-Machine Learning 
executive education course videos.

2 Ibid.

“Machine Learning deals with computer programs that 
try to learn from experience for prediction, modeling, 

understanding data, or controlling something. ” 

Figure 1: Limitations in spatial representations of features
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transformations use image � lters to distinguish between 
low-level and high-level features such as edges (i.e., 
boundaries between objects and combinations of edges, 
curves, parts, and the object).

The image signal traverses different transformation 
layers for processing low- to high-level features with 
the ML solution being speci� cation of transformation 
layers and how low-level features are combined. More 
granular speci� cation and precision is feasible using 
multiple layers of transformation, with the number of such 
layers representing the depth of the model and the ML 
problem becoming a deep learning problem. Such DL 
architectures, which are based on � ne tuning of millions 
of parameters across multiple layers of mathematical and 
geometrical transformations, pose interpretability and 
trustability challenges.

Algorithms called neural networks (NNs) are deployed to 
automate processing of text, voice, and images once they 
have been trained using millions of example images of such 
objects. NNs containing multiple transformation layers are 
called deep neural networks (DNNs). Three general types 
of DNNs are in common use for text, voice, and image 
processing. Convolutional neural networks (CNNs) are 
commonly used for classi� cation of visual images and 
are an example of feedforward neural networks that have 
acyclic nodes with all inputs and outputs independent 
of each other. Recurrent neural networks (RNNs), in 
contrast, are used for natural language processing (NLP) 
of sequential information and contain cyclic nodes with 
outputs being dependent on previous computations. Long 
short term memory networks (LSTMs) are an extension of 
the most commonly used type of RNNs that better capture 
long-term dependencies for sequential information � ows 
given much longer-term memory than vanilla RNNs. 

3. WHY MODEL RISK MANAGEMENT 
IS MOST CRUCIAL TO ROBUST 
AI-ML-DL USE

As noted earlier, CNNs are commonly used for 
classi� cation of still or moving images, such as in the 
case of Project Maven for autonomous classi� cation of 
objects of interest. Geoff Hinton, a pioneer of CNNs, noted 
recently that: “I think the way we’re doing computer vision 
is just wrong. It works better than anything else at present 
but that doesn’t mean it’s right.” Simultaneously, his 
lecture notes3 highlight “Why convolutional networks are 
doomed,” observing that: “sub-sampling loses the precise 

Figure 2: GAN: CNNs see all images on the right as ostriches

Figure 3: Technology-push inputs driven models: suitable for static and deterministic 
environmental and operational contexts
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spatial relationships between higher-level parts such as a 
nose and a mouth. The precise spatial relationships are 
needed for identity recognition.” (Figure 1)4

Mathematically, CNN ignores spatial relationships 
between the lower-level features such as eyes, nose, 
and, mouth; hence it computes the above two images 
in Figure 1 as being equivalent. Computer scientists and 
neuroscientists also note the challenges of interpretability 
and trustability that the fallibility of AI, and in particular DL, 
pose. Patrick Winston of MIT describes advances in AI in 
the past years as “computational statistics” rather than AI, 
observing that machines don’t have common sense: “The 
computer that wins at Go is analyzing data for patterns. 
It has no idea it’s playing Go as opposed to golf, or what 
would happen if more than half of a Go board was pushed 
beyond the edge of a table...”5 Tomaso Poggio of the 
McGovern Institute for Brain Research at MIT, notes that 
“These systems are pretty dumb. We have not yet solved 
AI by far. This is not intelligence.”6

The latest and, deemed greatest, innovation in AI-ML-DL 
is called Generative Adversarial Network (GAN). GAN is 
comprised of two nets, the “generator” generates new 
instances of data and the “discriminator” evaluates them 
for authenticity. The discriminator, which is a standard 
CNN, tries to determine whether a speci� c instance of 
data belongs to the actual training dataset or not. The 
generator is like an inverse CNN, which given random 
numbers generates an image. The goal of the generator 
is to pass fake images as authentic to the discriminator 
which then evaluates the images for authenticity based 
on its ground truth of real images. As seen in Figure 2, 
ML models are vulnerable to adversarial examples: small 
changes to images can cause computer vision models to 
make mistakes such as identifying a school bus as an 
ostrich. Human eyes cannot discern that images on the 
right are distorted versions of those on the left; CNN sees 
the three as ostriches.7

4. A KNOWLEDGE MANAGEMENT 
FRAMEWORK FOR MODEL 
RISK MANAGEMENT

For static and deterministic environmental and operational 
contexts, predictive modeling underlying AI-ML-DL is 
most optimal (Figure 3). Problems are de� ned in terms 
of static features (or attributes, characterizing respective 
objects) and feature vectors (i.e., mathematical arrays 
containing numeric representations of such features) 
that can be resolved optimally by pre-programmed and 
controlled mechanistic human and machine intelligence. 
As noted earlier, feature vectors are essentially arrays 
containing numeric identi� ers representing the speci� c 
attributes or features of the respective object, a vector 
being a two dimensional matrix with only one row but 
multiple columns of numeric data. 

However, in contexts characterized by complexity and 
uncertainty, as in Figure 4, predictive analytics based 
on historical data do not meet the dynamic target given 
pre-speci� ed outcomes. Hence, anticipation of surprise 
is needed along with requisite variety to tackle dynamic 
uncertainty and complexity.8  

Model risk management (MRM) is needed for 
environmental and operational contexts that do not match 
static and deterministic criteria with pre-de� ned and pre-
programmed problems and solutions. MRM is a function 
of the variance in both inputs and outcomes, as observed 
in Figures 1 and 2, respectively. Use of any statistical or 

3  Hinton, G., “Taking Inverse graphics seriously,” lecture notes, Department of Computer Science, 
University of Toronto, https://bit.ly/2Ud0KTy

4  Pechyonkin, M., 2017, “Understanding Hinton’s Capsule Networks. Part I: Intuition,” Medium, 
November 2, https://bit.ly/2AcPGg0

5 Refer to footnote 1
6 Ibid.
7  Elsayed, G. F. S. Shankar, B. Cheung, N. Papernot, A. Kurakin, I. Goodfellow, and J. Sohl-Dickstein, 

2018, “Adversarial examples that fool both computer vision and time-limited humans,” Cornell 
University, May 22, https://bit.ly/2U9LlTF

8  Malhotra, Y., 2005, “Integrating knowledge management technologies in organizational business 
processes: getting real time enterprises to deliver real business performance,” Journal of Knowledge 
Management 9:1, 7-28 

Figure 4: Strategy-pull outcomes driven models: suitable for complex and uncertain 
environmental and operational contexts
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mathematical model entails model risk since the speci� c 
results are not measured but estimated using the speci� c 
statistical and mathematical models. An important insight 
from model risk management research and practices is 
that there is unlikely to be any perfect model (all models 

are wrong), and the best results can be obtained from 
combining the results from models based on different 
inputs (some models are useful) – “All models are 
wrong, but some are useful” – George E. P. Box. Hence, 
instead of relying on any one speci� c quantitative model, 
using a range of different plausible quantitative models, 

which can be robustly discriminated from one another, 
is a recommended strategy for minimizing the model 
risk. When results from multiple models are combined, 
analogous to the use of “ensemble models” such as in 
ensemble learning, the variance in the range of estimates 
across the respective models provides a succinct measure 
of model risk. The papers and presentations downloadable 
from the author’s SSRN page (https://papers.ssrn.com/
author_id=2338267) discuss multiple speci� c examples 
of model risk management in the context of complex 
systems, spanning quantitative � nance and hedge fund 
trading systems and cyber risk insurance systems to 
AI-ML-DL-GAN applications in Space and Defense 
projects such as Project Maven. One example is the 
recent invited presentation to the CFA Society on Hedge 
Fund Chief Investment Of� cer Practices on using Auto-
Machine Learning (Auto-ML) for Model Risk Management 
(https://bit.ly/2tIg3b7). The current article spans the focus 
from Cybersecurity, Finance, and, Insurance to broader 
applications of AI-ML-DL-GANs in the Defense & Space 
risk management contexts, such as the Project Maven. 

“In dynamic, complex, and uncertain environments, 
anticipation of surprise is more important than 

predictive analytics based on historical data as 
the past may not be the best predictor of the future. ” 
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Speci� c examples will include multiple variations of 
the CNNs and related models being used to address 
the limitations of any one given model. Furthermore, 
the capsule networks (CapNets), which are proposed 
as a solution for ameliorating many of the limitations 
of CNNs noted earlier, provide additional diversity in 
terms of different plausible models that can be robustly 
discriminated between. Broadening the range of estimates 
based upon diverse models provides a better assessment 
of risk in terms of variance.

5. CONCLUSION: BEYOND “AI 
AUTOMATION” TO “AI AUGMENTATION”

As illustrated in the case of GANs, small changes to 
images not discernible to humans can cause computer 
vision models to make mistakes, such as seeing a school 
bus as an ostrich. While it is easy for humans to see a bus 
as a bus, it is hard for AI-ML algorithms to do so. Many 
simple tasks that anyone can do, like recognizing objects 
or picking them up, are much harder for AI-ML-DL as a 
recent report by the consulting � rm Deloitte notes.9 On 
the other hand, many of the issues related to algorithmic 
bias may be traced back to bias in training data or 
the design of algorithms and models. The same report 
notes that “AI algorithms must be complemented by 
human judgment.”

Remarking on the certainty of knowledge, Morris 
Kline had noted: “Insofar as certainty of knowledge is 
concerned, mathematics serves as an ideal, an ideal 
toward we shall strive, even though it may be one that 
we shall never attain. Certainty may be no more than a 
phantom constantly pursued and interminably elusive.”10 

Emanuel Derman observed: “Models are at bottom tools 
for approximate thinking. The most important question 
about any model is how wrong it is likely to be, and 
how useful it is despite its assumptions. You must start 
with the model and overlay them with common sense 
and experience.”11

There is no right model as the world changes in response 
to the ones we use. In addition, changing environmental 
and operational contexts make newer models necessary. 
Hence, knowing and applying the leading-edge 
developments in AI-ML-DL-GAN models is important 
for ensuring systemic and cyber risk management 
progress and growth aligned with world developments. 
It is, however, equally important to know the limits and 
boundaries of the models and related assumptions 
and logic by deploying “audacious imagination, insight, 
and creative ability”12 as noted by the mathematician 
Morris Kline.

9  Guszcza, J., H. Lewis, and P. Evans-Greenwood, 2017, “Cognitive collaboration: why humans and 
computers think better together,” Deloitte Insights, January 23, https://bit.ly/2wetBzl

10 Kline, M., 1980, Mathematics: the loss of certainty, OUP
11 Derman, E., 1996, “Model risk,” Goldman Sachs Quantitative Strategies Research Notes
12 Refer to Footnote 10
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