
Microservices: The software development approach with macro benefits potential / 1

MICROSERVICES:
The software development approach
with macro benefits potential

THE APPEAL OF THE MICROSERVICES APPROACH IS THAT
IT ALLOWS THE ENTERPRISE TO PROTECT AND EVOLVE
IMPORTANT EXISTING CAPABILITIES, WHILE ISOLATING
AND RAPIDLY REPLACING OTHER, LESS DESIRABLE,
LEGACY COMPONENTS.

Microservices: The software development approach with macro benefits potential / 3

Microservices are making waves in service oriented architecture. If you are experiencing
ever-increasing pressures to deliver agility and scalability from your IT estate, microservices are
certainly worth learning more about. Their promise is real and the disciplines required to implement
them effectively are achievable. The key to success is an informed approach, underpinned by
key-decision quality at the outset and effective ongoing organizational and technology support.

CONTEXT
Ever-increasing demands for enablement of business agility are leading
to software development expectations that are both evolutionary and
revolutionary. Large enterprises are typically conservative, requiring
technology continuity and a stable base. They tend to gravitate to the
more evolutionary approach of adapt and change (natural selection) as
opposed to the revolutionary mode of destroy and rebuild. The appeal
of the microservices approach is that it allows the enterprise to protect
and evolve important existing capabilities, while isolating and rapidly
replacing other, less desirable, legacy components.

DEFINITIONS
A microservices-based architecture is a specific type of service oriented
architecture (SOA) that addresses many business agility demand
issues through modern-day solutions. It is true that SOA itself is a very
broad term, covering many architecture styles. Microservices take a
more targeted approach. This allows for greater flexibility in defining,
evolving and deploying architectural components in the solution
domain, and, as a result, helping achieve greater organizational agility.

The microservices architecture structures a software application
as a suite of small services, each running its own process and
communicating via lightweight mechanisms. These services –
microservices – are built around business capabilities and are
independently deployable via fully automated means1.

SCALABILITY AND AGILITY ARE THE REWARDS
Defining the size and scope of individual microservices is a highly
flexible exercise. For the purpose of this summary, our focus is
on considering an architectural approach that has the potential to
significantly increase scalability and agility. We will explore the detailed
mechanisms later in this paper.

SCALABILITY
By running software with a microservice as the basic unit of
deployment, and by having the necessary ecosystem (‘scaffolding’)
to deploy units quickly and in an automated fashion, we can scale
software solutions by deploying only those microservices that need to
meet high volume or highly resource-intensive user loads.

AGILITY
In terms of agility, having microservices that can be deployed and
configured to work together in many ways – even in previously
unplanned ways – provides the software architect with a truly flexible
toolset for engineering solutions that meet business user needs. (The
term ‘business user’ is applied here in its widest possible sense. A
business user could be a back-office employee, an internal knowledge
worker, an external-facing customer, or an external system.)

DEMAND FOR MATURITY
With this approach, however, comes an increase in deployment
complexity and a change in the workings of architectural governance.
This in turn requires a higher degree of maturity than is typically found
in many organizations.

A CLOSER LOOK
In the following sections we address the key drivers for adopting
microservices. We also look at architecture and design attributes typical
in a microservices approach. We address data and how it is managed.
And we discuss – from a people and working styles perspective – the
impact a microservices architecture approach has on an organization.

MICROSERVICES
AT A GLANCE

Microservices: The software development approach with macro benefits potential / 3

Microservices: The software development approach with macro benefits potential / 4

A SMOOTH TRANSITION TO MICROSERVICES
FOR GREATER AGILITY AND SCALABILITY

TECHNOLOGY AND BUSINESS DRIVERS
There are many technology and business drivers that support transition
to a microservices-centric architectural approach. These include:

• The move to rich, dynamic, and highly interactive user experiences,
across multiple platforms and form factors;

• The rising trend of a polyglot approach, with people building services
in their language of choice and best fit, rather than standardizing on
a single language;

• Flexible deployment options (public and/or private cloud, etc.);

• Independent component lifecycles;

• Frequent deployment of components, as often as multiple times
each day;

• Improved ability to build new applications, based on compositions
of new and existing microservices.

Each of these drivers reflects a specific demand to which software
architecture agility can directly respond, ultimately leading to an
overall increase in business agility.

ARCHITECTURAL AND DESIGN ATTRIBUTES
The architectural and design attributes of a microservices architecture
resemble those of other architectural approaches that, as experience
has shown, lead to the development of robust systems. They include:

• Low coupling between components;

• High cohesion within components;

• High levels of scalability achieved with little effort;

• Fault tolerance of components and interfaces.

At this point, we would refer readers to the so-called SOLID principles2.
In the SOLID acronym, the letters denote the following principles:

S = SRP – single responsibility principle
O = OCP – open/closed principle
L = LSP – Liskov substitution principle
I = ISP – interface segregation principle
D = DIP – dependency inversion principle

The SOLID principles are applied most often to object-oriented systems
design. With regard to microservices, several of them are very much
worth adhering to strictly, in order to create a workable microservices
architecture. Below, we explain the key principles in more detail.

SRP
The single responsibility principle, in microservices terms, means
there should only be one reason for the service to exist, and a razor-
thin reason for change (this aligns closely to the Unix philosophy of “do
one thing well rather than multiple things poorly”).

ISP
The interface segregation principle means that clients of a service
should only depend upon the contracts they explicitly use (and not
have any underlying dependencies on the services they use in turn),
and they should strive to maintain as few service dependencies
as possible.

DIP
The dependency inversion principle, applied to microservices, means
that services should define and adhere to abstractions, as manifested
in their interface contracts. These abstractions should not depend on
details; rather, the details should depend upon abstractions. DIP is
close to the idea of inversion of control (IoC) – allowing an external
mechanism (e.g. Spring) to resolve run-time dependencies between
microservices, rather than building the run-time dependencies into
the components.

Microservices: The software development approach with macro benefits potential / 5

In addition, and in its ideal form, the microservices architecture approach
exhibits the following attributes:

• Intelligence in the endpoint-communications mechanisms is,
by necessity, very simple;

• Typical use of two simple communications interaction styles are:

 – Synchronous call support (e.g., HTTP/REST),
 – Lightweight messaging support (e.g., AMQP or similar);

• Components are independently deployable;

• Explicitly defined and documented component interfaces
are deployed;

• A ‘shared-nothing’ architectural approach is taken, whereby
components do not share any technology dependencies (memory,
data persistence, etc.) with any other component;

• There is increased reliance on, and usage of, build/test/deploy cycle
automation and sophisticated infrastructure management techniques
(continuous build and integration, devops, etc). In other words, you
need to set up automation to unlock the full value of a microservices
approach;

• Each component can be (and often is) implemented as an
appropriately-scoped subset of the IT organization’s technical
architecture – one appropriate for the business requirements of
the component.

ENTERPRISE ATTRIBUTES
Enterprises already committed to – or beginning a journey towards –
a microservices-based architecture most likely intend to build large
numbers of microservices, over time. Some of the architectural and
design attributes discussed above will come to the forefront, when the
building of a large suite of microservices is being considered. In addition,
the following enterprise attributes are relevant.

Simple communication interaction styles
Common, lower-level application-layer communication APIs that
abstract and homogenize the sending of data over the wire between
services must be adopted. The microservices that form an application (or
application suite) should all use this common set of communication APIs,
in order to ensure interoperability and pluggability. The good news is that
such APIs do exist. The less good news is that motivating an organization
to adopt them universally is a challenge.

Cohesion and shared-nothing promote testability
We need the ability to test our components in isolation. If we can
accomplish this, we can also carry out independent deployments. For
microservices, we must have a flexible (ISP + DIP) mechanism that
allows us to perform service testing. We can use the mock objects
pattern to assist but, for microservices, we have to push this to the
extreme. In general, at an enterprise level, we have to build scaffolding
– again, think of common APIs and tool frameworks that enable isolated
testing of components.

Defining microservice boundaries
While adhering to the single responsibility principle comes first and
foremost as a consideration, microservice boundaries should be aligned
with the business value chain. The concept of a business function within
the value chain is an excellent way to think about how services are
partitioned but, as a concept, it is still just a starting point. In practice,
some microservices may be ‘smaller’ than a specific business function
within the business value chain. Others may provide lower level, cross-
business-functionality. Does aligning with business value chains in fact
detract from business agility? Not really. While some enterprises may
change their fundamental service offerings, and expand or contract their
business value chains, our experience suggests that the value chains
themselves are quite stable. We address this issue further in the section
on key ingredients for success, since these necessarily influence how
(micro-)services are partitioned.

Coupling. Solving the problem of ‘chaining’ microservices

Often, in order to perform a useful business task, it will be necessary to
‘chain’ (or compose) a set of microservices together.

Consider a service that allows a retail banking customer to transfer
funds from one bank account to another entity (for example another
account at the same bank, or to an account at another institution). One of
the prerequisites for the transfer is that the source account has sufficient
funds. In this scenario, at least two services are in play: (1) a service
which returns and/or checks the current balance of the source account;
and (2) a service which performs the actual transfer of funds from the
source account to the target account.

Focusing on the ‘TransferFunds’ service, we can design it in at least two
different ways:

1. TransferFunds takes as input the transfer amount, checks the validity
of this amount (via the ‘AvailableBalance’ service), performs the
transfer function (possibly by invoking other services), and returns
a result.

2. TransferFunds takes as input both the transfer amount and the
available balance, checks the validity of the transfer amount, performs
the transfer function (possibly by invoking other services), and returns
a result.

The point here is that there is either an explicit or implicit dependency
between TransferFunds and AvailableBalance. In design alternative 2, the
dependency is implicit; we would need a higher-level service to invoke
both AvailableBalance and then TransferFunds. We have essentially
shifted the interdependency to a higher-level service. Then, in either of
these design scenarios, we have to wire some services together – the
endpoints (addresses) have to be known at run-time. We can apply some
sound OO (object-oriented) and EAI (enterprise application integration)
patterns, such as adapter and factory, to aid us in following the
dependency inversion principle. Ultimately though, we need some run-
time configuration information to enable one service to invoke another.

A SMOOTH TRANSITION TO MICROSERVICES
FOR GREATER AGILITY AND SCALABILITY CONTINUED

Microservices: The software development approach with macro benefits potential / 6

The following best practices in run-time configuration management
should be applied:

Implement a configuration management facility that deploys
configuration information to all services in the infrastructure, so that
whenever a microservice is (re-)deployed, its endpoint dependencies
are deployed with it. There are good tools for achieving this, such as
Puppet, Chef, and Ansible. If all endpoints (e.g. REST endpoints) can be
placed behind a network load balancer, or other HA (high availability)
configuration (e.g. JMS clustering), then this simple approach can
work very well.

Set up a configuration service Off-the-shelf tools, such as Netflix’s
Eureka Server, are available to facilitate this approach. As individual
service instances start up, they register themselves with the
configuration service. Each service is a client of the configuration

(location) service, asking for an endpoint address of any service that
needs to be invoked. Replicating configuration service nodes across
physical data centers (and using tools such as Spring Boot to configure
business services to abstract details of the location services), provides
a vast amount of scalability, while keeping service coupling to
a minimum.

It must be noted that these approaches to sharing configuration and
endpoint information across services do introduce some coupling
between the microservices in architecture. In reality, ‘shared-nothing’
is more aspiration than achievable goal, once an enterprise starts
creating entire application suites composed of microservices. Also,
minimizing run-time endpoint dependencies does require more
organizational effort – both in terms of time and money – as well as
greater discipline.

A SMOOTH TRANSITION TO MICROSERVICES
FOR GREATER AGILITY AND SCALABILITY CONTINUED

MICROSERVICES: DECOMPOSING MONOLITHIC APPLICATIONS

BUSINESS
VALUE CHAIN
(BVC)

MARKETING
& SALES

SERVICING

Consumer lending BVC
example (focus on
origination functions)

ORIGINATION UNDERWRITING FULFILLMENT

MICROSERVICES
IMPLEMENTATION
OF BUSINESS
FUNCTIONS

MONOLITHIC
APPLICATION
IMPLEMENTATION
OF A BVC

Each application fulfills
multiple business
functions within a segment
of the value chain

Microservices – a suite
of small services, each
running its own process
and communicating via
lightweight mechanisms,
based on agreed
communication protocols
and data formats

Origination
Application

Underwriting
Application

Fulfillment
Application

RECEIVE
application

ASSIGN
application to Loan

Coordinator

AUTHENTICATE
customer (KYC)

CREATE
loan file

SEND LOAN
to Underwriting
for decisioning

OBTAIN
customer risk profile

(from external service)

NOTIFY
Loan Coordinator

MICROSERVICE

LEGEND:

Primary Origination Cycle

Microservices: The software development approach with macro benefits potential / 7

MICROSERVICES ORCHESTRATION
Some organizations find that, over time, microservices implementing
business processes have been orchestrated in an ad hoc manner,
using a combination of pub/sub, making direct REST calls, and using
a database to manage the state. Without a central orchestrator,
as the number of microservices grows and process complexity
increases, gaining visibility into these distributed workflows becomes
difficult. Consequently, we would consider central orchestration
as a best practice, but only for organizations that have scaled to a
level of microservices adoption that may be experiencing the issues
noted above.

One approach to orchestration is to use an enterprise service bus
(ESB). The choice of ESB platforms should be made thoughtfully,
with due regard paid to microservices fit and scale. Any platform that
cannot support hundreds – or thousands – of independently-deployed
microservices should be avoided.

Kai Waehner, technology evangelist for TIBCO, described use of the
company’s ActiveMatrix BusinessWorks as a wholly suitable platform
for hosting microservices, as a result of its combination of scalable
runtime and low hardware footprint3. Use of such a platform does
carry some orchestration advantages, due to sophisticated tooling
capabilities. Our advice here is that organizations which have already
made investments in platforms such as TIBCO BusinessWorks should
seriously consider their suitability for microservices.

Another approach is to use a relatively lightweight, general-purpose
service orchestration framework. Apache Camel is a notable example
implementing many of the enterprise integration patterns4 and a few of
these patterns are key to orchestrating microservices.

Yet another approach involves a custom orchestration framework.
Prominent among these is Netflix Conductor5 built as an ‘orchestration
engine’ to address the following requirements:

• Blueprint base (a JSON DSL based blueprint which defines the
execution flow);

• Tracking and management of workflows capability;

• Ability to pause, resume and restart processes;

• Visualization of process flows through a user interface;

• Ability to synchronously process all tasks when needed;

• Ability to scale to millions of concurrently running process flows;

• Back-up by a queuing service abstracted from the clients;

• Ability to operate over HTTP or other transports e.g. gRPC.

CANONICAL DATA MODELS
The term ‘canonical data model’ can conjure images of substantial
data architecture effort to develop a comprehensive, governed data
model for a large enterprise. Paradoxically, this would appear directly
at odds with the development of a suite of independent, lightweight
microservices. And indeed, if this traditional, resource-intensive
image of a canonical data model were the only way to share a
common vocabulary of data entities across microservices, it would
be impractical.

Fortunately, industry efforts such as the schemas from Schema.org
have recently made it much easier to posit a common vocabulary of
data entities. These are in fact a set of ‘types’, each associated with
a set of properties. The ‘types’ are arranged in a hierarchy. The core
vocabulary at the time of writing consisted of 589 types (‘classes’),
860 properties, and 114 enumeration values. While the current
set of types in Schema.org is quite rich, a schema that attempts to
name all objects, interactions, and concepts will not always serve all
applications or domains equally well. In some cases, the organization’s
microservices architecture can leverage the available types and extend
them in a private (organization-centric) way. In other situations, it may
be worthwhile to submit extensions to the community process and
make them a permanent part of the standard.

There is also an argument for avoiding canonical data models, which
can be a valid tactical approach for microservices architectures and for
enterprise architectures6.

OTHER DATA CONSIDERATIONS
Data persistence and management are specific to each component.
There are several approaches to practical implementation, but coupling
at the data layer is a microservice antipattern. We recommend, during
an architectural transition to microservices, to ‘wrap’ the data access
and persistence interactions in an API that looks like separate, service-
specific data setup. Once each data interaction is isolated behind this
API layer, the data-stores themselves can be separated over time. (We
anticipate however, that this final step will be lower priority than many
other initiatives. In practice, ‘technical debt’ will likely be carried forward
for a long time.)

It should be noted, that this transition state still leaves some level of
coupling between microservices that should be entirely independent7.

We also recognize the need to move traditional database layer
responsibilities to the service implementation layer, for activities such as
enforcing referential integrity – something that will require information
architects to rethink how they structure and govern data in an enterprise.

MICROSERVICES INTEGRATION
CONSIDERATIONS

Microservices: The software development approach with macro benefits potential / 8

MICROSERVICES INTEGRATION
CONSIDERATIONS CONTINUED

MICROSERVICES DEPLOYMENT USING SPRING CLOUD

CLIENT

Push update Spring Cloud service

On demand Functional service

At service startup Common service

LEGEND:

ZUUL
Eureka Client

CONFIG SERVER

Docker

EUREKA

Docker

SERVICE CALL

Docker

ORDER
Eureka Client

Docker

SHIPMENT
Eureka Client

Docker

CACHING
Eureka Client

Docker

NOTIFICATION
Eureka Client

Docker

TRANSFORMATION
Eureka Client

Docker

NOTIFICATION
Eureka Client

Docker

LOGGING
Eureka Client

Docker

TRANSFORMATION
Eureka Client

Docker

INVENTORY
Eureka Client

Docker

ORDER
Eureka Client

Docker

CUSTOMER
Eureka Client

Docker

LOCATION
Eureka Client

DEPLOYMENT CLUSTER

Docker

READ REGISTRY

REGISTRY UPDATE

RE
GI

ST
ER

RE
GI

ST
RY

 U
PD

AT
E

RE
GI

ST
ER

RE
GI

ST
RY

 U
PD

AT
E

RO
UT

ED
 S

ER
VI

CE
 C

AL
L

RO
UT

ED
 S

ER
VI

CE
 C

AL
L

RE
AD

CO

NF
IG

UR
AT

IO
N

RE
AD

CO

NF
IG

UR
AT

IO
N

SERVICE CALL

Zuul looks up a running service
instance based on the Eureka
registry and routes accordingly

All services (including
common) register with
Eureka on startup

All services read their
configuration from the
Config Server on startup

Multiple service instances can be
started dynamically by the container
manager (often Kubernetes)

Clients call a service with a standard URL
to ZUUL. This can be fronted by another
router, but is not required. Services can
call other services directly using their
Service Registry cache

CONFIG
REPO

Microservices: The software development approach with macro benefits potential / 9

DEVELOPMENT TEAM STRUCTURE, FUNDING,
AND GOVERNANCE
For an organization determined to successfully implement a
microservices architecture, the following features are important.

• Teams are cross-functional within a suite of services and organized
as deployable units (e.g. designers, developers, testers, and others
are all part of the same team).

• There is a good fit between a microservices approach and
Agile methodologies.

• Deployment units are treated more as products than projects (while
the development team also provides production support and tends to
stay with the product over its lifespan).

• Funding models are flexible and, rather than fund a large project
with a fixed end-date, a team is funded with a run-rate cost
commensurate with the current product backlog, business priorities,
and desired pace of change.

• There is recognition that centralized governance is not as valuable
in the world of microservices as it tends to drive monolithic solutions
and standardized tech stacks. In fact, governance should be focused
more pragmatically on such issues as service contracts and quality
metrics, while leaving specific technology choices to the (largely
autonomous) component teams.

The above features, particularly the last point, suggest that the role of
enterprise architecture (EA) should evolve in organizations that have
commenced a microservices architecture journey.

KEY INGREDIENTS FOR
MICROSERVICES SUCCESS

MICROSERVICES READINESS CHECKLIST
Be under no illusions: a microservices architecture does
not remove the need for good architecture practices and
discipline. On the contrary, these strengths are more important
than ever. Before embarking on any journey to adoption of the
microservices approach, organizations must assess where
they stand today, in terms of the drivers and disciplines that
will determine just how well this approach will work for them
tomorrow. In key areas of the business, a number of important
questions need to be raised and answered honestly.

 Business drivers’ status

Is there sufficient appetite inside your business for a truly
responsive software development agenda? Do scalability
and agility really matter in business terms? Are their benefits
understood, in the context of commercial competitiveness
enablement and at senior level?

 Architecture discipline

Do you have the architecture discipline needed to sustain
and grow a microservices ecosystem? (You must give the
results of any assessment very careful consideration. Avoid
at all costs just plunging into the next generation of service
oriented architecture, without a clear understanding of current
strengths and weaknesses.)

 Understanding of current approach
Do you have an accurate picture of the way you do things
today? Your existing architecture principles and governance
structures will need to be examined and modified, to align
with microservices best practices. And many of the ways your
people work will need to change.

 Data management policy

Do you have the flexibility and maturity in data governance?
You will need to know about and be willing to accommodate
revisions to data management policies and a move away from
a centrally defined tech stack.

 Relevant expertise

Do you have the in-house technology capabilities to transform
the theory of a microservices architecture into a working
reality? Access to appropriate and proven external support
can prove invaluable in the pursuit of successful delivery.

Microservices: The software development approach with macro benefits potential / 10

CONCLUSION

MICROSERVICES ARE NOT THE PANACEA, BUT THEIR VAST
POTENTIAL CANNOT BE IGNORED
For a start, the microservices approach will not, on its own, fix a
‘broken’ organizational software delivery process. Yet the real benefits
it brings – of scalability and flexibility – are eminently achievable. And,
as organizations make the transition to a cloud-based infrastructure
and the internet of things (IoT), structuring their application architecture
using a microservices approach will indeed be a natural and logical fit.

MICROSERVICES, MACRO BENEFITS
For all its inherent challenges, including the churn and chaos that will
be inevitable at the beginning of the journey, the benefits to be enjoyed
at the destination will make the effort worthwhile.

Microservices are demonstrably capable of delivering macro benefits.
Alone, they cannot make organizations work. With the correct
understanding, expectations and disciplines in place however,
organizations can most assuredly make microservices work for them,
reaping the rewards of agility and scalability, and ultimately, profit
and growth.

REFERENCES
1 http://martinfowler.com/articles/microservices.html
2 http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
3 http://www.kai-waehner.de/blog/2016/07/08/tibco-activematrix-businessworks-6-leading-integration-service-delivery-platform/].
4 http://www.enterpriseintegrationpatterns.com/index.html
5 http://techblog.netflix.com/2016/12/netflix-conductor-microservices.html
6 https://www.innoq.com/en/blog/thoughts-on-a-canonical-data-model/
7 Chris Richardson (creator of CloudFoundry and author) addresses both the shared database antipattern (http://microservices.io/patterns/data/shared-database.html) and the database per

service pattern (http://microservices.io/patterns/data/database-per-service.html) to show the inherent difference. Another credible source is Arun Gupta’s blog http://blog.arungupta.me/
microservice-design-patterns/

Bangalore

Bratislava

Brussels

Chicago

Dallas

Dusseldorf

Edinburgh

Frankfurt

Geneva

Hong Kong

Houston

Kuala Lumpur

London

New York

Orlando

Paris

Pune

São Paulo

Singapore

Stockholm

Toronto

Vienna

Warsaw

Washington, DC

Zurich

ABOUT CAPCO

Capco is a global technology and management consultancy dedicated to the financial services industry. Our professionals combine
innovative thinking with unrivalled industry knowledge to offer our clients consulting expertise, complex technology and package
integration, transformation delivery, and managed services, to move their organizations forward. Through our collaborative and
efficient approach, we help our clients successfully innovate, increase revenue, manage risk and regulatory change, reduce costs,
and enhance controls. We specialize primarily in banking, capital markets, wealth and investment management, and finance, risk &
compliance. We also have an energy consulting practice. We serve our clients from offices in leading financial centers across the
Americas, Europe, and Asia Pacific.

To learn more, visit our web site at www.capco.com, or follow us on Twitter, Facebook, YouTube,
LinkedIn and Xing.

© 2017 The Capital Markets Company NV. All rights reserved.

CAPCO.COM

WORLDWIDE OFFICES

AUTHORS:
Darrell Rials, Principal Consultant
Mick Smothers, Principal Architect

CONTRIBUTORS:
Luke Penca, Principal Consultant
Poorna Bhimavarapu, Managing Principal
Pete Grebus, Principal Consultant
Rajendra Konduru, Managing Principal
Matthew Markham, Partner

