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As the � nancial services industry continues to embrace 
transformation, advanced arti� cial intelligence models are 
already being utilized to drive superior customer experience, 
provide high-speed data analysis that generates meaningful 
insights, and to improve ef� ciency and cost-effectiveness.  

Generative AI has made a signi� cant early impact on the 
� nancial sector, and there is much more to come. The highly 
regulated nature of our industry, and the importance of data 
management mean that the huge potential of AI must be 
harnessed effectively – and safely. Solutions will need to 
address existing pain points – from knowledge management 
to software development and regulatory compliance – while 
also ensuring institutions can experiment and learn from GenAI. 

This edition of the Capco Journal of Financial Transformation 
examines practical applications of AI across our industry, 
including banking and � ntechs, asset management, investment 
advice, credit rating, software development and � nancial 
ecosystems. Contributions to this edition come from engineers, 
researchers, scientists, and business executives working at the 
leading edge of AI, as well as the subject matter experts here 
at Capco, who are developing innovative AI-powered solutions 
for our clients. 

To realize the full bene� ts of arti� cial intelligence, business 
leaders need to have a robust AI governance model in place, 
that meets the needs of their organizations while mitigating the 
risks of new technology to trust, accuracy, fairness, inclusivity, 
and intellectual property. A new generation of software 
developers who place AI at the heart of their approach is also 
emerging. Both GenAI governance and these ‘Developers 3.0’ 
are examined in this edition. 

This year Capco is celebrating its 25th anniversary, and our 
mission remains as clear today as a quarter century ago: to 
simplify complexity for our clients, leveraging disruptive thinking 
to deliver lasting change for our clients and their customers. 
By showcasing the very best industry expertise, independent 
thinking and strategic insight, our Journal is our commitment to 
bold transformation and looking beyond the status quo. I hope 
you � nd the latest edition to be timely and informative. 

Thank you to all our contributors and readers. 
 

Lance Levy, Capco CEO
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engines running, it led to great billable hours for participants, 
spawning many startups, mixed solutions from developers, 
and money thrown at buzzwords. Pressure from time and 
money deployment compressed the processes for separating 
the grain from the chaff, which led to some not-so-pretty 
conclusions when the meals were � nally consumed. History 
repeats itself, albeit maybe with some twists, tweaks, and 
turns. Similar compressed and expedited processes were seen 
during other such hyped times, including the dot com bubble. 
On the AI front, on February 9th, 2023, Google lost U.S.$100 
billion dollars of its market value as the market punished it 
for its tardy Bard presentation. But was it tardy or is there an 
“AI catch up or lose” issue being exempli� ed? We found it 
interesting that some venture capitalists began pointing to the 
lack of practicing/checking the pitch before the presentation. 
Cannot see the forest for the trees or calculated censure given 
the exit plan relationship? The point remains that the pace 
with which all things AI are being pushed to consumers, users, 
funders, advisors, et al. seems to rekindle some memories for 
those of us who were at the table during the past frenzies. This 
time again, perhaps, maybe a little bit of overuse, abuse, and 
misuse of AI and its applications? 

ABSTRACT
Arti� cial intelligence is a very powerful application whose time has come. At a quick glance, it can be really seductive to 
believe, for example, the purveyors of xxxGPT, that its deployment is as simple as pushing a button or is a “data in, miracles 
out” strategy. However, harnessing it effectively requires navigating a myriad of options embedded within its critical pillars 
of data, models, and visuals. The complexity is accentuated by the deployer’s capabilities and the organization’s openness 
to change, as outcomes move from rules to an objective-based spectrum. In navigating these challenges lies the key to 
optimal deployment.

OVERVIEW OF ARTIFICIAL INTELLIGENCE 
DEPLOYMENT OPTIONS

1. INTRODUCTION

In the realm of arti� cial intelligence (AI), some amazing things 
are being done by some amazing people, which is leading 
to some amazing results. Hopefully, this paci� es the shallow 
learning experts. Now for the deep(er) learning aspects of the 
current push of AI everywhere and for all. For the older 
engineers, most of the models being deployed (with some 
updates) have been there for many years, so what gives? 
Well, for one, we know that great strides in readily available 
computing power have been an excellent catalyst for the more 
ubiquitous push of AI. Another has been the ever-increasing 
money supply via the venture community and their ability to 
sell assets between themselves or to the next tier private or 
public community. This race to automate all things human is 
making engineering cool again with more jobs available than 
degrees being printed. Therein, establishing the current cycle 
by pointing the research engines at the opportunities at hand.

For some of us it has a hint of the Y2K1 days when every 
boardroom, chatroom, money room, and classroom was 
pushing for solutions to the elusive double zero so the world 
would not come to a standstill. Since the world needs the 

1  For the younger readers, Y2K was the year 2000, when all computing was to come to an abrupt end due to the perceived poor programming of the elder 
generation. A lot of money was spent trying to fi x the issue and we will never know if there were more issues or billable hours.
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For example, in the � nancial markets, given the current AI 
environment, one could consider using Natural Language 
Processing (NLP) techniques to read and � le documents 
as somewhat of a boxed case, whereas, implementing NLP 
techniques to read real time data for advantageous � nancial 
trading so far remains an advanced case. Another way to look 
at this is that applying boxed cases in the non-stationary/
research quadrant may be punitive and using advanced 
cases in the stationary/implement environment may not be 
value add. We will not get into the mathematical aspects, but 
where applicable, we will highlight limitations of assessed AI 
techniques as well as our proposed research nudges.2 

We are not saying that AI is not here to stay and note that 
the “rocket” train has left the station. Figure 1 visualizes 
the traditional versus AI-based deployments that allow 
parsing through numerous datasets, models, viewpoints, and 
visuals, etc., concurrently to continually assess historic and/
or predicted performance within multiple aspects, subject to 
de� ned or suggested objective and evaluation functions. 

The approach is very powerful and at a quick glance it can 
be really seductive to believe, for example, the purveyors of 
xxxGPT, that AI deployment is as simple as pushing a button or 
is a “data in, miracles out” strategy. Maybe true in the elusive 
future, but the current reality is that AI deployment has a lot 
of optionality and right choices need to be made to capture 
its immense potential. Being on the wrong frenzy driven side 
may entail wasted time and effort, as will be realized by some 
blindly following herds. The needs and level of intensity varies 
across use cases, regions, industries, etc. One way to think 
about this is in Figure 2, where for effective AI deployment we 
need to balance the expectations of the use case depending 
on the skill/experience level and the potential task complexity. 

Within each of the quadrants, there is a lot of optionality and 
need for a lot of decisions. For the more complex cases, 
effective AI deployment is even more dif� cult and a lot of work 
still remains to be done. However, once any breakthrough 
happens then the trajectory of AI deployment engineering is 
relatively rapid, but we need those nudges and breakthroughs. 

TECHNOLOGICAL  |  OVERVIEW OF ARTIFICIAL INTELLIGENCE DEPLOYMENT OPTIONS

2  https://www.ask2.ai/research/

Figure 2: AI effort quadrants
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2. UNDERSTANDING OPTIONALITY

AI deployment is in a transitory stage and effective rollouts 
will depend on the knowledge bank of the deployers and 
decisions made by the users. As with Y2K, or the dot com 
bubble, or “then some”, participants may burn money as AI 
is the new big idea whose time has come. Our suggestion 
is that if you have a seat at the table, it may be wise to 
look at the ingredients, chefs, and the dishes more closely. 
The more complicated dishes may need more than a naïve 
attempt from a cookbook and an independent mechanism for 
judgment. To make this discussion more pointed, we explore 
the AI deployment optionality around selecting a mutual fund 
manager. We assume those reading have some exposure 
to mutual funds and would ask you to parallel your current 
assessment processes. We look at the deployment optionality 
within each of AI’s three pillars: data, models, and visuals. 

We stay away from the arguments around why these three or 
which pillar is more important. Some consider data to be the 
new oil, some modeling secrets to be the sauce, and some 
unique visual wrappers to be the trust builders. Additionally, 
judgment mechanisms have to be set that help evaluate the 
optionality within stability frameworks that allow evaluating the 
tracking error among other elements. Since this is done over 
time and on out-of-sample data, the judge is considered an 
independent unbiased framework for evaluating the results. As 
we will see, there is optionality there too as decisions need to 
be made on setting the appropriate objectives and associated 
evaluation criteria. This can be complicated, as judgments 
involve decisions on the related value system that supports 
the recommendations, selection, rewards, and penalties. The 

use cases, participants, judges, etc., are different and thus the 
deployment optionality needs to be understood for appropriate 
selection. This is because beyond considering all as vital 
pillars, each use case could have a very different path to “its” 
optimal solution. Finding that path or the tuning is possibly the 
key. In Figure 3, we had some fun illustrating some possible 
ways of connecting the dots. 

Not surprisingly, there are numerous ways to connect the 
dots. Arguably, for boxed cases they may be established (or 
more or less speci� ed for a use case), but until the advanced 
cases become boxed, the paths have to be tuned or are open 
to arbitrage. The arbitrage comes from the choice of faster 
deployment of any model/system (e.g., maybe untested for the 
use case) or cautious deployment of better models (e.g., tuned 
for the case). Depending on the use case the risk-rewards can 
be very different.

Furthermore, for binding the pillars, another layer comes into 
play, such as change management. As we know, without 
having the right people, entities, aspects, etc., be part of the 
AI deployment journey, or the right setup, there is a risk that 
all of the work may end up gathering dust somewhere. This 
is especially important as you begin to appreciate the level 
of optimality and decision points that needs to be addressed 
across AI deployment. Then, there are other related challenges 
of regulatory frameworks, local challenges, accessibility, 
computing power, etc., and many of them are transitionary. 

Overall, for maximum effectiveness, it may be best to try not 
to compress the processes for separating the grain from the 
chaff. So, let us see what the cooking optionality entails. 

Figure 3: Path choices

DATA MODEL VISUAL
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3. DATA

Data: the ingredients for the dish is a critical pillar. Simply 
put, although the xxxGPT purveyors may give an illusion, 
as per our assessment, models are not clairvoyants (yet). 
From a data perspective, it is as essential to have the data 
as well as to understand how to use the data. The current 
stage of AI deployment has put more focus on the “having 
part” with arguments spanning more is better, unique is better, 
etc. This is not unusual, as we are somewhat in the early 
stages of AI deployment and thus resource gathering is vital. 
However, the resources are not as readily, cleanly, or widely 
available. This opportunity has spawned providers from the 
software participants pitching streamlined storage or access 
capabilities, better processing capabilities, pure data providers 
pitching clean(er) or proprietary datasets, hybrids pitching 
better signal processing, and so on. 

Until we reach the elusive utopian data stage, we � nd that data 
management straddles all the boxes of the AI effort quadrants. 
This becomes especially true as processes evolve from we 
“have” data to “how best to use” the data stage. Even within 
the “we have” data part, you will note that you need to be 
careful and know what you have/get as not everything is as 
simple as a pitched boxed case.

3.1 Nature of data

Data itself can be classi� ed as “structured” or “unstructured”. 
Structured data is tailored and generally stored in designated 
formats, while unstructured data is an amalgamation of 
different data types stored in their native formats. For example, 
your hard drive may be structured, but we can assume that 
various types of � les are stored in the sub directories. This 
analogy can be extended to the task in hand and, as you will 
start to note below, the ability to manage both data types is 
generally a value add. De� nitionally, processing unstructured 
data is more of a challenge and the key resides in effective 
and accurate extraction. Not surprisingly, a lot of effort is being 
expended in streamlining unstructured data so more and more 
can be part of boxed cases. 

3.2 Types of data

The types of data sourced are topical. For our mutual fund 
example, we can source processed or unprocessed price 
data, holdings data, alternative data, news data, social data, 
proprietary data, and so on. Within each of these data types, 
there are various � elds with varying frequency that all add 
to the data management complexity (e.g., multidimensional 
information can be tick level, minute, hourly, monthly, 
semiannual, etc.). 

3.3 Storage of data

The traditional usage and familiarity are generally around 
“relational” databases, where tables are used to store data 
(think Excel). As relationships become more complex, “graph” 
databases may be better suited (think trees, branches, 
and leaves). Each branch or leaf can store various types of 
information, and since the types are somewhat grouped 
(e.g., within the branch or leaf) the number of connections 
is reduced versus a relational table where data is in a tabular 
form. For example, this can improve the response and 
management time associated with the queries. For our mutual 
fund example, the price and related information may be in a 
tabular form in the relational database, whereas connected 
information, such as alternative or social information, is in the 
graph database. 

Data volume also has to be balanced with concerns around 
control and security, where fragmented data is harder to 
protect consistently. For example, the large data needs 
of LLM/GPT are understood but it is undecided whether to 
store data internally or use open-source solutions. The E.U.’s 
GDPR dictates data privacy norms and this puts an increased 
burden on data walls and mirrors, navigating global versus 
local datasets, inherent biases, etc. Basel regulatory pressures 
include making data auditable and reproducible for third 
parties. And so on.  

3.4 Pre-processing data

The objective here is to have the data ready for analysis. The 
data can be sourced from a single or multiple sources, be in 
different formats, have different information, stored in a variety 
of ways and so on. For our mutual fund example, we also 
have to deal with multidimensionality and time series that are 
continually updated. To get the data ready for analysis, varying 
degrees of pre-processing may be required. 

3.4.1 APPENDING AND CHECKING DATA 

Most participants take the source data as a given. Unfortunately, 
there is usually no one true source of data. For the mutual 
fund example, data can be received from multiple sources, 
can have different identi� er codes/symbols (e.g., CUSIP, ISIN, 
SEDOL, TICKER, etc.), and could be subject to very different 
taxonomies and protocols. It is imperative to know what you 
are working with, the rationale for the difference, where the 
pitfalls are, and so on. For example, a comparison of data for 
the same mutual fund from two reputable sources can show 
different (a) alternative data – expense ratio compositions, b) 
price data – total return on how they capture capital gains and 
dividend days, or c) holdings data – sector exposures. It is worth 
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noting that this is for � nancial products, where the reporting 
is more or less structured – as in regulation heavy, legalized 
via prospectuses, and reported via electronic exchanges. Now 
imagine these pitfalls where the data is unstructured and all 
of it could be driving exposure, sentiments, signals, and so on. 

3.4.2 FORMATTING AND CLEANING DATA 

As the baseline data needs are set, additional steps are 
format cleaning and data standardization. Format cleaning 
requires streamlining the data, where some features may be 
stored as strings, could be nested, not have values, different 
frequencies, and so on. Once general formats are set, the 
dataset could further require “imputation” (e.g., � lling the 
missing data with substituted values, where imputing time-
series data should avoid data-leakage), NLP (e.g., aligning 
nomenclature that points to the same), and model speci� c 
engineering (e.g., standardizations). For example, � lling 
missing data utilizes techniques from the simplest to the 
most sophisticated, including (a) forward auto� ll, (b) linear 
interpolation, (c) cubic spline interpolation, (d) cubic B-spline 
interpolation, (e) Brownian bridge, (f) variance gamma bridge, 
(g) Fourier transform techniques, and so on.

For the mutual fund example, the data is received at discrete 
points in time. We have to keep track of manager history 
across accounts rather than just continuity in the fund. When 
a manager leaves or joins another fund, the system has to 
account for the adjustment in expertise. Similarly for illiquid 
assets, the performance is self-reported as there are no 
central clearing systems. The challenge extends to managing 
incomplete data, incorrect data, reported biases, and so on.

3.4.3 TESTING DATA 

We have to ensure that the datasets are robust enough to deal 
with AI models, e.g., raw or processed with cleaned values. 
Testing includes ensuring perturbations, different signal-to-
noise ratios, adversarial attacks, and such, do not drastically 
distort results. 

3.5 Processing data 

The assumption at this point is that the data is clean and 
readily accessible for analysis. The objective of this part is then 
to make the data ready for modeling purposes. 

3.5.1 DEALING WITH LARGE DATASETS 

Generally, models are able to deal with more data better than 
with less data. At the same time, feeding similar data would 
lead to over� tting, auto-correlation, and other not so pleasant 

issues. Dimensionality reduction, such as “principal component 
analysis” (PCA), is one such method that can transform 
and reduce the number of measures or times so a single 
series can represent a set (without losing any information). 
However, if the datasets have time and multidimensionality 
aspects, then the standard PCA techniques may not give 
stable results. Here, we propose the robust rolling PCA (R2-
PCA) that mitigates commonly found obstacles, including 
eigenvector sign � ipping, temporal instability, and managing 
multiple dataset dimensions. If the objective is to identify some 
latent relationships or interrelationships among variables, then 
“factor analysis” (FA) can be the preferred method.

3.5.2 DEALING WITH SPARSE DATASETS 

This can be a real challenge for AI models, as nothing can 
be done without data. However, if there is some level of data, 
then that can be augmented with synthetic data. Techniques 
such as Bayesian sampling and adversarial generative 
modeling can help create data that closely mimics existing 
datasets. Here, generative and hierarchical models are 
used to sustain statistical properties and stylized facts for 
different frequencies in both the time domain and frequency 
domain. These are high-risk areas, as care must be taken to 
ensure that the augmented datasets do not contribute to an 
alternative reality. We refer to our work on “temporal attention” 
and “temporal transformer generative adversarial networks” 
(TAGAN & TTGAN), where images inspired the original work 
and now the work is being extended to account for various 
datasets including � nancial products.

3.5.3 ASSESSING DATASETS

These techniques can augment the analysis and make 
for easier explainability when reduction or performance 
assessment techniques are applied across categories versus 
across the whole dataset.

•  Categorizing/classifying: this is a simple form of 
grouping datasets where items can be bunched within 
prede� ned categories. This can be done using basic 
de� nitions or some manual structure of commonalities. In 
our mutual fund example, the industry has grouped funds 
using prede� ned classes, e.g., Large Cap, Small Cap, 
Fixed Income, and so on. 

•  Segmenting: this is a way to divide the data into parts 
or segments based on motivation. In our mutual fund 
example, it can be those funds that perform well during 
a regime. 

TECHNOLOGICAL  |  OVERVIEW OF ARTIFICIAL INTELLIGENCE DEPLOYMENT OPTIONS
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•  Clustering: this is a more advanced form of 
categorization/classi� cation, where the groupings are 
based on similarities and data characteristics. For 
example, clustering mutual funds based on holding data 
exposure (equity, sector, etc.), performance measures, 
factor sensitivity, macro/market conditions, alternative 
data, etc. This can be done in a parallel or in a sequential 
manner. If datasets have time and multidimensionality 
aspects, standard “clustering” methods (K-Means, 
Hierarchical, etc.) may not give stable results. We propose 
CPK-Means and SIK-Means methods for producing stable 
and deterministic clusters over time.

•  Regimes: this classi� es the dataset into periods of 
similar behavior or events. The classi� cation includes 
the de� ning characteristics of the regimes as well as the 
transition probabilities as movements between regimes. 
This can effectively assess the anticipated behaviors at 
similar points in time. For example, an advanced use case 
assesses how the fund clusters behave within and/or 
across regimes. Given the complexity of managing times 
series and multidimensionality, we propose an AI-based 
methodology for classifying regimes that produce stable 
� nancial regimes with transition probabilities. 

•  Measuring performance: these are constructed by 
manipulation of the same underlier in the form of a 
time series. For our mutual fund manager selection, the 
underlier is price, and the performance measures range 
from primitive to those requiring advanced � nancial 
engineering. A survey and a taxonomy of portfolio 
performance measures reveals that there are over a 
hundred such performance measures, and there is 
an assessment choice of time horizons (e.g., monthly, 
quarterly, annual, three years, � ve years, etc.) and roll/look 
back windows (e.g., daily, monthly, quarterly, etc.). Some 
of these performance measures are relative and thus need 
a designated benchmark. To quantify the manager’s risk 
attitude, we propose an additional golf inspired “advisor 
assessment framework” with a scorecard, fairway average, 
and handicap. 

•  Indexing/labeling: this is a way of naming the grouped 
data to be easily referable. In our mutual fund example, 
Cluster A can be funds with high returns and Cluster B can 
be funds with low volatility. Note that since the data within 
the group takes on the implied meaning, this can lead to 
biased results and potentially amplify issues. 

Given the inherent probabilistic nature of AI models for 
making the suggestions, recommendations, selections, and 
so on, it should not be surprising that a large number of the 
data processing techniques are statistical in nature. The key 
is choosing the proper technique and understanding that 
many of the boxed solutions may not work for the learning-
based models. 

4. MODELS

Models: the equipment for the dish are a critical pillar. They 
encapsulate the analytical part of the task and objective. This 
is a complex part of the deployment process, yet a lot is taken 
for granted or assumed to work, potentially as black boxes. 
Depending on the task, model dependency or deployment 
can easily straddle all the boxes of the AI effort quadrants. 
Attempting to naively transplant models across use cases 
with differing nuances, datasets, temporal considerations, 
dimensionality, and so on, can be punitive (depending on 
the appetite for the error rate). There are many models to 
choose from and some are better for the task, some easier 
to comprehend, some easier to explain, some easier to 
implement, and some less computationally expensive, etc. 
We need to be able to choose the “right” models and have 
mechanisms to know when they are working and when they 
are not working. 

4.1 Setting the framework 

The model deployment framework consists of setting the 
objective, measuring the results, evaluating the results, 
accepting or rejecting the results (or the penalty-reward 
functions for the more advanced models), and re� ning the 
models – then repeating the loop. In actuality, this is done 
rapidly and concurrently by running numerous models under 
various scenarios, parameters, assumptions, targets, etc. All 
are obviously subject to the deployer’s knowledge, data depth, 
and available computational power.
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4.1.1 OBJECTIVE FUNCTION

The objective acts as the desired result for the model. This 
target cannot be abstract and has to be set as a quanti� able 
objective function. For example, if the results of the target are 
to drive a decision, then the target can be one or many steps 
towards “suggesting” the optimal decision. Consequently, the 
objectives can be interim or � nal, near or longer term, whole or 
components, sequential or nonsequential, single or multiple, 
and so on. Additionally, a subtle difference between an 
objective and a constraint is worth noting, where constraints 
are guard rails that drive the model towards the target.

4.1.2 MEASURING RESULTS

This entails assessing if the objective or the target has been 
met. The selection, ranking, or recommendation is usually 
based on the results closest to the target. The more precisely 
the objective function is de� ned, the easier it is to measure the 
results. It is also essential to assess details around the results, 
for example, which models were performed, what the error 
rate was, under what circumstances or scenarios it was met, 
what features drove them, were there any outliers, and so on, 
as all this comes into play via the re� nement loop.

4.1.3 EVALUATING RESULTS 

This entails accepting or rejecting the results. If this includes 
potentially rewarding or penalizing the results, then it also 
allows for setting the degrees of reward-penalty functions. 

•  Back-testing: this technique involves splitting the dataset 
into a training set and a test set. The model is trained on 
the training set and then evaluated on the unseen test set 
to assess its generalization performance. This evaluation 
helps determine how well the model performs on new, 
unseen data. This can also include various types of 
“scenario analysis”, “stress testing”, and “simulations”. 

•  Validation set and early stopping: in cases where 
models have hyperparameters to be tuned, a validation 
set is often used. It is separate from the training and test 
sets and is used to evaluate different hyperparameter 
con� gurations. Early stopping is a technique that monitors 
the model’s performance on the validation set and 
stops training when performance deteriorates, thus 
preventing over� tting. 

•  Robustness testing: this involves testing the trained 
model over various different data with known and similar 
characteristics to see how the trained model behaves. 
This could include having different degrees of noise, 
perturbations, and adversarial attacks.

•  Deployment: once an AI model is deployed in real time 
applications, ongoing monitoring and evaluation are 
essential. This involves tracking the model’s performance, 
detecting anomalies or drifts, and ensuring it continues 
to perform as expected. This also serves as input for the 
re� nement loop. 

4.2 Selecting the models

There are many types of models, including simplistic ones, 
complex ones, and those that auto choose between models. 
One more characteristic has to do with the representation of 
data or input, where if the data is presented in multiple levels 
and a different model is used at each level and gets combined 
for � nal decision making, then the models are hierarchical.

4.2.1 RULE-BASED MODELS

These are the simplest form of models that operate based 
on prede� ned rules. They follow “if-then” logic to make 
decisions that are essentially � xed equations to represent 
relationships between inputs and outputs. These models are 
straightforward to implement and suitable for simple problems 
but are less effective for complex tasks and have limited 
� exibility and adaptability. A mutual fund selection example 
would be to select a fund if the total return is more than a 
certain percentage.

4.2.2 REGRESSION-BASED MODELS

These models are suitable where there is a need to identify 
some form of a relationship between the inputs and outputs. 

•  Linear regression: these utilize a linear equation to 
model the relationship between input features and the 
target variable.

•  Lasso regression: these perform feature selection and 
regularization by adding an L1 penalty term (the sum of 
the absolute values) to the loss function. 

•  Ridge regression: this incorporates an L2 penalty term 
(the square root of the sum of the squared values) into the 
loss function, encouraging smaller coef� cient values.

•  Elastic net: these combine L1 and L2 penalties, offering 
a balance between feature selection and regularization.
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Regression-based models offer advantages such as 
interpretability and � exibility and allow for the assessment of 
the relative importance of different input features in determining 
the outcome. Regression models provide a statistical 
framework for inference and hypothesis testing and explicitly 
de� ne assumptions about the relationships between variables, 
which helps guide the modeling process. Regularization 
techniques, such as ridge regression or lasso regression, can 
be applied to mitigate issues like multicollinearity or over� tting. 
They are computationally inexpensive and provide a baseline 
for comparing the performance of other complex models. 
They are also widely understood and used in various � elds, 
making them accessible to researchers and practitioners, e.g., 
credit scoring, demand forecasting, econometrics, marketing 
analytics, risk assessment, and in general predictive analytics. 
A mutual fund selection example would be to select a fund 
based on the regression coef� cients of measures, where it 
can be expected that the coef� cients would adjust for the 
changing performance.

4.2.3 BAYESIAN MODELS

These, also known as belief networks or probabilistic graphical 
models, are graphical representations of probabilistic 
relationships between variables. They use directed acyclic 
graphs to depict dependencies and conditional probabilities. 
Bayesian networks are used for reasoning under uncertainty, 
probabilistic inference, and decision making.

•  Bayesian networks: these extend traditional linear 
regression by incorporating prior distributions over 
the regression coef� cients. It provides a probabilistic 
framework to estimate the uncertainty associated with the 
regression parameters and make predictions.

•  Bayesian linear regression: these extend traditional 
linear regression by incorporating prior distributions over 
the regression coef� cients. It provides a probabilistic 
framework to estimate the uncertainty associated with the 
regression parameters and make predictions.

•  Gaussian processes: these are � exible probabilistic 
models that de� ne a distribution over functions. They can 
be used for regression, classi� cation, and uncertainty 
estimation. Gaussian processes capture prior assumptions 
about the smoothness and correlations in the data.

•  Variational autoencoders (VAEs): these combine 
the concepts of autoencoders and Bayesian inference. 
They use deep neural networks to learn a low-dimensional 
representation of the data and model the underlying 

distribution in a probabilistic manner. VAEs enable 
the generation of new samples and provide 
uncertainty estimates.

•  Bayesian neural networks (BNNs): these integrate 
Bayesian inference with neural networks. They assign 
probability distributions to the network weights, allowing 
for uncertainty estimation and more robust predictions. 
BNNs can be trained using techniques like variational 
inference or Markov Chain Monte Carlo (MCMC) sampling.

•  Sequential Monte Carlo methods: these are also 
known as particle � lters, Bayesian-based models used 
for state estimation and tracking in dynamic systems. 
They represent the probability distribution using a set 
of particles and update the distribution as new 
observations arrive.

•  Bayesian reinforcement learning: these combine 
reinforcement learning techniques with Bayesian 
inference. It allows for incorporating prior knowledge 
about the environment and policies, enables uncertainty 
estimation, and provides a principled approach to 
exploration-exploitation trade offs.

Bayesian-based models offer advantages such as the ability to 
handle uncertainty, incorporate prior knowledge, update beliefs 
with new evidence, and provide probabilistic interpretations. 
They � nd applications in various domains, including natural 
language processing, computer vision, and decision making 
under uncertainty. A mutual fund selection example would 
be to select a fund based on sector preference by examining 
sector rotations and their impact on holdings in mutual 
funds. This could help to pick funds that are resilient to some 
macro shocks.

4.2.4 MACHINE LEARNING-BASED MODELS

Machine learning-based models can learn complex patterns 
and relationships in the data that cannot be captured by 
linear regression models. These models can handle non-
linear relationships between variables and adapt to complex 
decision boundaries, and can automatically learn relevant 
features from raw data, reducing the need for manual feature 
engineering. They are designed to handle large datasets 
with high computational ef� ciency and can scale well. They 
often employ ensemble methods, such as random forests or 
gradient boosting, to combine multiple models and improve 
overall performance. Their strength is in automatically 
selecting relevant features and identifying the most informative 
variables for the task at hand.
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•  Decision trees: these are hierarchical structures that 
recursively split the data based on input features to make 
predictions. They are easy to interpret and widely used in 
various applications.

•  Random forests: this is an ensemble learning method 
that constructs multiple decision trees to make predictions.

•  XGBoost: this is a “gradient” boosting algorithm that 
combines weak learners into a strong predictive model.

•  Support vector machines (SVM): these are 
supervised learning models that classify data by � nding 
optimal hyperplanes.

•  (e) Naive Bayes: these are probability-based classi� ers 
assuming independence between features given the class.

•  (f) Gaussian mixture: these are probabilistic models that 
assume the data is generated by a mixture of Gaussian 
distributions. They are often used for clustering and 
density estimation.

•  (g) Hidden Markov: these are statistical models that 
can capture temporal dependencies in sequential data. 
They are commonly used in speech recognition, natural 
language processing, and bioinformatics.

•  (h) Logistic regression: this is a statistical machine-
learning model used for binary classi� cation problems. It 
estimates the probability of a binary outcome based on 
input features using a logistic function.

•  Principal component analysis (PCA): this is a 
dimensionality reduction technique that identi� es the most 
important features or patterns in data. It transforms the 
data into a lower-dimensional space while retaining as 
much information as possible. 

Machine learning techniques encompass unsupervised and 
semi-supervised learning approaches, which can discover 
patterns and structures in the data without relying on explicit 
labels. These methods can be valuable for exploratory 
analysis, clustering, anomaly detection, and identifying hidden 
patterns. They are often designed to adapt and learn from 
new data, allowing them to handle changing environments. A 
mutual fund selection example would be utilizing a supervised 
machine learning algorithm like logistic regression to classify 
mutual funds. For example, � nding the probability that a group 
of mutual funds with good historical performance would 
continue to have good future performance.

4.2.5 DEEP LEARNING-BASED MODELS

These models have a human-like ability to learn based on 
non-linear and more complex relationships embedded in 
the data. Deep neural networks can automatically learn 
hierarchical representations of the data. They consist of 
multiple layers of interconnected nodes (neurons) that learn 
increasingly complex features at each layer. They can model 
non-linear relationships and capture complex patterns in 
the data. They can scale effectively to large datasets and 
are designed to handle big data scenarios, and can bene� t 
from parallel computing on GPUs or distributed systems. This 
scalability allows for training models on vast amounts of data, 
which can improve performance and generalization. They 
often bene� t from transfer learning, where models trained on 
large datasets or related tasks can be utilized as a starting 
point for new tasks. For example, pre-trained models, such 
as those trained on ImageNet for image recognition, offer 
a head start by leveraging prior knowledge and learned 
representations, reducing the need for extensive training on 
new datasets. They can extract relevant features from raw 
data automatically. Through multiple layers of abstraction, 
they learn representations that are useful for the given task. 
This feature extraction and representation learning make deep 
learning models effective in tasks such as image classi� cation, 
speech recognition, and NLP. The disadvantages of “deep 
learning models” are that interpretability is challenging, and in 
general, they are data hungry, which means they require much 
more data for learning and to avoid over� tting.

4.2.5.1 Early generation models 

Convolutional neural networks (CNNs) and recurrent neural 
networks (RNNs) are particularly effective in capturing spatial 
and temporal patterns in these domains. CNNs are designed 
to capture spatial patterns and structures, while RNNs are 
effective in modeling sequential or time-series data. This 
makes them well-suited for tasks like object recognition, 
sentiment analysis, speech recognition, and machine 
translation. They can learn directly from raw input to output 
without relying on manual feature engineering or intermediate 
representations. This end-to-end learning simpli� es the 
modeling pipeline and reduces the need for domain-speci� c 
knowledge and handcrafted features. They have demonstrated 
state-of-the-art performance on various tasks, surpassing 
traditional machine-learning approaches. They can achieve 
higher accuracy and better generalization, especially when 
trained on large-scale datasets. 
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•  Feedforward neural networks (FNNs): these are 
inspired by the structure of the human brain; FNNs consist 
of interconnected nodes (neurons) organized into layers. 
They are usually used for reverse engineering or one-to-
one mapping. 

•  Convolutional neural networks (CNNs): these employ 
convolutional layers to extract features from input data and 
are used for image recognition tasks.

•  Autoencoders (AEs): these models are used for 
embedding and dimensionality reduction.

•  Recurrent neural networks (RNNs): these are suitable 
for sequential data; RNNs utilize recurrent connections to 
capture temporal dependencies. Long short-term memory 
(LSTM) and GRU (gated recurrent unit) are also variations 
of recurrent neural networks that were introduced to help 
with vanishing gradients to avoid premature optimization.

•  Transformer models: this is a type of architecture used 
for various tasks, especially natural language processing, 
due to their attention mechanism’s ability to handle long-
range dependencies effectively (particularly effective for 
natural language processing tasks, transformer models 
leverage attention mechanisms for sequence modeling).

4.2.5.2 New generation models

Deep learning models bene� t from ongoing research 
and advancements in the � eld. With the growing popularity 
of deep learning, new architectures, regularization 
techniques, optimization algorithms, and network designs 
continue to emerge, pushing the boundaries of what is 
possible. Recent advances in deep learning models are to 
work on human languages.

•   Generative models: even though they may classify as 
part of deep learning models, we set them under their 
own due to their architecture and training. These models 
aim to generate new data instances that resemble the 
training data. Examples include: “generative adversarial 
networks” (GANs), which is a type of autoencoder that 
learns a probabilistic representation of data, enabling 
the generation of new samples; and “variational 
autoencoders” (VAEs), which is a type of autoencoder that 
learns a probabilistic representation of data, enabling the 
generation of new samples.

•  Transformer learning models: these models 
leverage knowledge learned from one task to improve 
performance on a different but related task. Pretrained 

models like BERT for NLP or ImageNet-pretrained CNNs 
are common examples. Other examples include: “large 
language models” (LLMs), which are recent advances in 
deep learning models to work on human languages (the 
transformer architecture is the fundamental building block 
of all LLMs); and “generative pre-training transformer” 
(GPT), which is a language model that is pre-trained 
on sample data (tokens) to understand and then create 
language results, for example, for sentiment analysis.

In mutual fund selection, the methods and models often 
struggle to capture the complex patterns and stylized facts, 
potentially leading to suboptimal decisions. Generative 
adversarial models (GANs) or variational autoencoders 
(VAEs) can generate synthetic data that closely mimics the 
characteristics of real mutual fund data for better and more 
robust training of models.

4.2.6 HYBRID MODELS

Hybrid models refer to the combination of two or more different 
AI techniques or algorithms to create a single, more powerful, 
and effective model. For instance, reinforcement learning 
with deep neural networks (deep reinforcement learning) has 
been used in various applications. These models leverage 
the strengths of each individual technique, compensating for 
their weaknesses and improving overall performance. Hybrid 
models are often used to solve complex problems that may 
be challenging for a single AI approach to handle on its own. 
They can help make more informed decisions by combining 
different types of data, models, or strategies. 

In mutual fund selection, they can (a) combine structured data 
(e.g., � nancial statements, price history) with unstructured 
data to gain a more comprehensive view of the fund’s potential. 
By integrating various data sources, the model can identify 
patterns and relationships that individual models might miss 
and (b) help evaluate risks by combining traditional statistical 
models with machine learning algorithms. The statistical 
models may provide a solid foundation for risk estimation, 
while machine learning models can add the capability to 
analyze complex patterns and market dynamics, (c) use NLP 
techniques to analyze sentiment from news articles, social 
media, and � nancial reports, then combine the sentiment 
scores with other � nancial indicators to make more informed 
investment decisions, and (d) be designed to learn and adapt 
over time by combining reinforcement learning with other 
algorithms to continuously improve their decision-making 
abilities as market conditions change.
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4.3 Training the models

Models need to base their decisions on some form of prior 
behavior that is set as an objective, and those suggestions 
can be accepted or rejected (including rewards or penalties for 
the more advanced models) at evaluation. Training techniques 
center around how to make the models learn the logic for 
making the suggestions. Feature engineering to extract 
meaningful patterns or relationships from raw data, which 
can help the model better understand the underlying patterns 
that can assure accurate classi� cations or predictions. This 
involves baseline training, testing (on out of sample data), and 
validation (during training to make sure there is no over� tting).

4.3.1 SUPERVISED TRAINING

The models learn from labeled training data to make predictions 
or classi� cations. They are provided with input-output pairs 
during training and aim to generalize patterns in the data to 
make accurate predictions on new, unseen data. Models learn 
to make predictions by minimizing the discrepancy between 
predicted and true labels. As such, labeled data means that 
for any input, the corresponding output is called a label, where 
input features are paired with corresponding target labels.

4.3.2 UNSUPERVISED LEARNING

The models learn by � nding patterns and relationships in 
unlabeled data. They do not have explicit target labels during 
training with an aim to discover patterns, structures, or 
representations without explicit target labels. Unsupervised 
techniques often perform tasks like clustering, anomaly 
detection, dimensionality reduction, and generative modeling.

4.3.3 SEMI-SUPERVISED LEARNING

The models learn by a combination of supervised and 
unsupervised learning, where the model is trained on a small 
amount of labeled data and a larger amount of unlabeled data.

4.3.4 REINFORCEMENT LEARNING

The models learn by utilizing an agent interacting with an 
environment, learning optimal actions through trial and error. 
They receive feedback in the form of rewards or penalties for 
their actions and aim to maximize the cumulative reward over 
time. Reinforcement signals (rewards) guide the agent toward 
desired behavior. 

4.4 Tuning the models

Training a model refers to the process of feeding labeled data 
into a model and adjusting its (internal) parameters so that it 
can learn to make accurate classi� cations or predictions on 
new (unseen) data. Tuning a model is the process of optimizing 
the hyperparameters of the trained model to improve its 
performance. These are parameters that are not learned 
during training but affect the learning process and the model 
parameters that result from it.

4.4.1 HYPERPARAMETER SEARCH

Hyperparameter search plays a vital role in � ne-tuning 
machine learning models in order to do optimal performance. 
Grid search, random search, and Bayesian optimization are 
three common methods used for this purpose, each offering 
unique advantages. The choice of the hyperparameter search 
method depends on the complexity of the model, available 
computational resources, and the size of the hyperparameter 
space. By selecting the most suitable hyperparameters, 
machine learning models can deliver more accurate and 
reliable predictions for a wide range of real-world applications.

4.4.2 HYPERPARAMETER TUNING

Hyperparameter tuning involves optimizing model 
performance by � ne-tuning hyperparameters, such as 
learning rate, regularization strength, batch size, and 
more. Unlike model parameters that are learned during 
training, hyperparameters are set before training and could 
signi� cantly in� uence how the model learns and generalizes 
from data. Proper hyperparameter tuning is essential for 
achieving optimal model performance and preventing 
issues like over� tting or under� tting. By systematically 
adjusting these hyperparameters, learning models can better 
adapt to complex datasets and deliver more accurate and 
reliable predictions.

4.4.3 ONLINE LEARNING

Models are trained incrementally on streaming data, adapting 
to new information in real time. Particularly useful when data 
arrives sequentially or when computational resources are 
limited. Instead of waiting to accumulate a large batch of data 
and then retraining the model periodically, the online learning 
approach processes the data as it arrives. This approach 
enhances the ability to optimize outcomes that need real 
time assessments.
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4.4.4 AUTOML (AUTOMATED MACHINE LEARNING)

Automates the process of model selection (architecture), 
hyperparameter tuning, and feature engineering. Reduces the 
need for manual intervention, making AI more accessible to 
non-experts. For example, AutoML can automatically generate 
features (e.g., technical indicators, fundamental analysis 
metrics) that are relevant to predicting the performance of 
the mutual funds. By doing this, the system can sift through 
numerous holdings, analyzing different features, and can 
identify patterns and relationships that humans might overlook.

4.5 Assessing the models

Assessment techniques for AI models involve evaluating their 
performance, accuracy, and generalization capabilities. These 
assessment techniques provide insights into an AI model’s 
performance, help identify areas for improvement, and ensure 
its suitability for the intended task or application. The choice of 
assessment techniques depends on the speci� c problem, type 
of model, and available data.

4.5.1 ACCURACY AND LOSS METRICS

These metrics measure the model’s performance on a speci� c 
task. For classi� cation problems, metrics like accuracy, 
precision, recall, and F1-score are used. For regression 
problems, metrics such as mean squared error (MSE) 
or mean absolute error (MAE) are commonly used. These 
metrics provide quantitative measures of how well the model 
is performing.

4.5.2 CROSS-VALIDATION

Cross-validation is a technique used to assess a model’s 
performance by splitting the dataset into multiple subsets or 
folds. The model is trained and evaluated on different subsets, 
allowing for a more robust evaluation of its performance. 
Common cross-validation methods include k-fold cross-
validation and strati� ed cross-validation.

4.5.3 CONFUSION MATRIX

A confusion matrix is a table that summarizes the performance 
of a classi� cation model by displaying the counts of true 
positive, true negative, false positive, and false negative 
predictions. It provides insights into the model’s ability 
to correctly classify different classes and identify errors 
or misclassi� cations.

4.5.4 Receiver operating characteristic (ROC) 
curve and area under the curve (AUC)

These techniques are primarily used for binary classi� cation 
problems. The ROC curve plots the true positive rate against 
the false positive rate at various classi� cation thresholds. The 
AUC represents the area under the ROC curve and provides a 
measure of the model’s ability to distinguish between classes.

4.5.5 PRECISION-RECALL CURVE

The precision-recall curve illustrates the trade off between 
precision (the proportion of true positives among predicted 
positives) and recall (the proportion of true positives identi� ed). 
It is particularly useful when dealing with imbalanced 
datasets or problems where one class is of greater interest 
than the other.

Overall, simply saying there is “AI” or transplanting solutions 
may not work as they have to be selected, tuned, trained, and 
re� ned for the tasks. To put this in perspective of our mutual 
fund selection example, assume we want to select � ve mutual 
funds (from a choice of thousands) given an objective (and 
evaluation criteria) of generating three-year excess return over 
the S&P500. Much like the multiple mutual funds, depending 
on the deployer’s knowledge bank, there can be multiple 
models capable of dealing with multidimensional and temporal 
� nancial market datasets. These could include simplistic ones 
based on a single measure, a � xed equation, regression based, 
machine learning based, deep learning based, AutoML models, 
and so on. Furthermore, the circumstances themselves need 
to be modeled, including the interplay of measures, regimes, 
events, signals, sentiments, factors, etc. Another set of models 
could be for back-testing, where a model stability framework 
needs to be set up to continually assess if the chosen model 
is behaving the way it is supposed to and the triggers to note 
if/when the model is misbehaving and what to do (hopefully 
as a leading indicator). Simulation models can give color on 
the behavior of the selection under different scenarios. All this 
is in a continual loop of selection, evaluation of the variance 
from the objective, and re� nement. It should also be noted that 
as we go beyond selection, other sets of models come into 
play, such as for asset allocation, portfolio management, risk 
management, asset planning, and so on. 
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On the change management side, this also highlights the 
need for robust “model risk management” (MRM) frameworks, 
especially for high-risk decisions, including:

•  model change policies addressing periodic recalibration, 
data acquisition, algorithm decision overrides, dataset 
shifts, and replacement criteria

•  using multiple shadow AI models, as recommended by 
regulators, to challenge and monitor the performance 
of the primary model

• establishing validation and audit standards.

5. VISUALS

Visuals: the appeal/taste of the dish remains a critical pillar. 
We believe visuals serve an important purpose in helping 
build trust around the analyses (however simple or complex). 
Without going on a psychology tangent, let us assume that 
human acceptance of results requires some degree of comfort 
around what the recommendation is for, when it is being 
made, and why it is being made. From a human-and-human 
perspective, this resides in the form of trust built around direct 
or implied relationships, needs, experiences, and so on. If we 
were to assume that human-and-AI interaction is also loosely 
based on a similar setup, then there needs to be a similar 
trust system. AI deployments attempt to build that trust by a) 
being accretive to some expectations (e.g., reduce time/effort, 
be pro� table, etc.), and b) presenting them, at least initially, 
in a humanly digestible way (e.g., numerical and graphical 
representations that are appropriate, pertinent, experiential, 
etc.). This engagement is likely the key to accepted deployment, 
and as they say, a picture should speak a thousand words, or, 
in this case, become the face of the computational engines. 
We will not delve into the myriad of visual/presentation 
choices; simply put, if the visuals are not meaningful, intuitive, 
and easily explainable, then no matter how good the results, 
they may not be “useful” and will possibly be put in a drawer 
somewhere. In our opinion, for AI development to be trusted, 
it needs to be able to clearly represent the “what, why, and 
when” in a transparent and simple manner.

5.1 The what

The telos or the purpose of the AI application deployment. 
Holistically and locally, what is the purpose of the deployment? 
Is it accuracy, personalization, removing biases, eliminating 
emotions, supplementing information, expanding knowledge, 

automation, scaling analysis, remote or distant delivery, 
increasing solution points, increasing speed, reducing costs, 
increasing pro� tability, removing blind spots, identifying 
embedded relationships, recognizing patterns, detecting 
anomalies, faster execution, etc.? Yes, the choices and 
objectives can be very diverse and multiple, but they need 
to be articulated, understood, and set. The what, or the 
objective, is the key and is managed via accept-reject (or with 
reinforcement methods leveraging penalties and rewards) 
decisions in the training of the models. Herein, unless the telos 
or the overall objective is agreed to clearly, it may be a dif� cult 
deployment as the AI decision systems can be geared towards 
very different answers. AI deployment allows users to move 
from rule-based to decision-based ecosystems, but we note 
that these decision-based systems reside somewhat within 
rule-based ecosystems as critical decisions on objectives 
and judgments are arguably disguised rules with levels of 
granularity. And these need to be set.

In our mutual fund example, the objective can be to maximize 
excess return, and the evaluation can be to have a high 
Sharpe ratio. If the objective is to have a high return and 
low volatility, then you can set one as the primary objective 
(high return) and the other as a constraint (lower volatility), 
or use the “explainability index” approach to accommodate 
both. From a visuals perspective, setting the objective 
allows for easier visual representation for deployment, with 
numerical or graphical representations ranging from simplistic 
two-dimensional ones, such as line charts, to complex 
multidimensional ones, such as heatmaps, bar charts, stacked 
area charts, bar plots, parallel coordinate plots, etc. All with 
the motivation of providing data points to instill con� dence 
and trust. 

5.2 The why

This can be viewed as supporting representations for the 
decisions being “suggested”. Any form of a model (whether 
complex or naive) can be a black box, depending on the 
user’s sophistication. To build trust, we need to know why 
the decision is being made. However, given the accept-reject 
frameworks (or the penalty-reward functions for the more 
advanced models) embedded in the AI designs, it is easier 
to know if/when the outcomes are reliable than to know why 
(or how) the models are making them. And, as expected, 
increasing model complexity makes it exponentially more 
dif� cult to identify decision rationales. As a result, a lot of 
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focus is on back-testing and simulations to test the models, 
but “the why” remains possibly the least structured part of 
the AI deployment processes. With increasing AI deployment, 
some methods are being suggested that try to explain the 
model’s workings, including “partial dependence plots” (PDP), 
“permutation importance”, “global surrogate models”, and 
“anchors”. Here we discuss the more common ones.

5.2.1 INTERPRETABILITY

This is to understand the relationship between elements in 
terms of the cause and effect (e.g., inputs and outputs); the 
drivers within the relationship for understanding the causality.

•  LIME (local interpretable model-agnostic 
explanations): a technique for explaining individual 
predictions of black-box models. Generates locally 
interpretable explanations by perturbing input data and 
observing the impact on model predictions. Visualization 
tools can display the explanations, such as highlighting 
important regions in an image or showing word 
importance in text data.

•  SHAP (SHapley Additive exPLanation): a method to 
attribute the contribution of each feature to the prediction 
outcome based on cooperative game theory.

5.2.2 EXPLAINABILITY 

Understanding what is implied by the elements (e.g., inputs or 
outputs) in terms of what they all represent as part or whole. 
This facilitates data comprehension. 

•  Attributions/contributions: visualizing the attribution or 
contribution of input features to the model’s predictions. 

•  Feature visualization: technique that is used to 
understand what features or patterns in the input data 
activate speci� c neurons in an arti� cial neural network.

•  Explainability index (EI) and “risk of target” (RoT): 
technique that explicitly balances hundreds of input 
categories of performance measures according to default 
or speci� ed preferences for a composite bounded score 
between 0 and 1 for each and the aggregate of the 
measures. RoT leverages the EI for comparing individual 
performance against benchmarks (as targets). The 
composite and component analyses explain the drivers 
of divergence of the target/objective (as a point-in-time, 
trend, or relative assessment). In the mutual fund example, 
this can also be used for managing multiple objectives 
and for reinforcements.  

Image generated by Adobe Fire� y
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Regulatory concerns have added impetus to explainability and 
interpretability research. For example, under the E.U. GDPR, 
consumers are entitled to explanations for algorithm-driven 
decisions, a right not explicitly con� rmed in the U.S. While AI 
may excel in credit scoring statistically, few E.U. banks seemed 
to have sought licenses for AI in internal credit evaluations due 
to regulatory concerns. In contrast, unregulated credit rating 
agencies heavily rely on AI. 

5.3 The when

This can be viewed as the representations for the time 
period(s) being assessed. They can be absolute or relative and 
assess results as point-in-time or trends.

5.3.1 Historical 

Visualizing past data and trends to gain insights into historical 
patterns and relationships. Time series plots, line charts, and 
heat maps are commonly used for visualizing historical data.

5.3.2 Prediction 

Visualizing model predictions to understand patterns, trends, 
and potential future outcomes. Scatter plots, bar charts, 
and interactive visualizations are used to represent 
prediction results.

5.3.3 Scenario analysis 

Creating visual representations of hypothetical scenarios to 
explore the potential impact of different variables or events. 
Helps in decision making, risk assessment, and planning by 
visualizing various outcomes. 

5.3.4 Simulation

Visualizing simulations of complex systems or processes. 
Allowing users to observe and analyze the behavior of the 
simulated results. Graphs, animations, and 3D visualizations 
are common techniques used in simulation visualization.

5.3.5 Back-testing 

Visualizing the results during discrete points in time on out of 
sample or historic datasets. Helps in visualizing results during 
similar periods. 

6. CONCLUSION

Our aim with the paper is to give the reader an appreciation 
of the multitude of ways to connect the dots, choices within 
use case deployments, possible variations in results, need for 
localized knowledge, dangers in oversimpli� cation, need for 
cross sectional expertise, and so on. For the boxed cases, we 
may be more comfortable in pushing the proverbial deployment 
button (e.g., via a xxxGPT), but as the risks associated with 
the decisions increase, the deployment need and analysis 
may move across the quadrants, where understanding the 
nuances becomes critical in enabling optimum outcomes. As 
you read AI publications, you will note that the AI deployment 
itself is no different. The preference is somewhat in the eye 
of the beholder and pitched around the deployer’s knowledge 
(including searchable methods) that is in� uenced by their 
backgrounds and agenda, e.g., economist, mathematician, 
philosopher, politician, etc. For example, economists tend to 
lean on the cost or value wrappers, and philosophers on the 
choice wrappers.

One way to think of the deployment optionality spectrum is as a 
range from acceptable imperfection (i.e., with lower accuracy, 
higher error tolerance, low ef� ciency per training data, weak 
models, weak infrastructure, etc.) to assumed perfection (i.e., 
with generally reduced choices with hyper personalization). We 
note that a) perfection itself is transitory, as most methods are 
based on available knowledge banks that are rapidly evolving, 
and b) current AI deployments can largely only handle accept-
reject functions (with degrees of reward-penalty functions for 
more advanced ones); they are weak in managing the grayer 
human aspects such as implied meaning, emotions, evolving 
expectations, intentions, gut, valuing collateral damage, etc. 
The question becomes how is the telos (or, for that matter, your 
thinking) placed on the spectrum? Going to our food analogy, 
just because we know certain food types are not good, do you 
entirely stop eating them? Do you only go to the very “best” 
restaurants? How much of the freedom of choice can you give 
up? How quickly do you cede control to the “suggestions”? 
These decisions are easier for some tasks than others. As 
you frame answers to these choices, you start forming your 
deployment spectrum placement and path. 
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Since AI deployment is technical, the question regarding 
whether you need supplemental expertise and from whom 
arises. Experts are putting stakes in the ground with 
publications and packaged solutions. Incumbents with legacy 
infrastructure and capital investments have varying degrees of 
inertia and appetite for discovery. New entrants’ nimbleness 
allows for speedy delivery but generally comes with a higher 
focus on beauty and experience, so the cut/paste of models 
becomes risky as the results can be very questionable. Either 
way, not everyone can engage in the advanced quadrants, 
as that requires knowledge, time, and capital. Herein is our 
word of caution, the race to AI everywhere that is now being 
accentuated with the xxxGPT claimants across verticals has 
dangerous elements, especially when combined with the 
traditional tech industry mindset of accepted risk of failure in 
getting the minimal viable product out. Maybe herd decisions 
will make some use cases subject to self-ful� lling prophecies, 
but where the risks associated with deployment are high you 
need to be cautious.

In navigating these elements lies the key to mitigating adverse 
surprises akin to the Y2K and the then some money burning 
adventures. We believe effective AI deployment lies in the 
knowledge intersection of subject matter, computer science, 
data science, and machine learning expertise. Advanced 
users understand the importance of what is under the hood 
and casual users base the usage on trust, which is earned. 
Either way, we � nd that meaningful AI deployments demand 
more than a simplistic “data in, miracles out” strategy. They 
require meticulous tuning, enhancements, and occasionally 
rethinking approaches. As such, great experiences blend the 
exterior with calibrated power under the hood.
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